Posts | Comments

Planet Arduino

Archive for the ‘distance’ Category

Giu
30

If you’ve ever had to move around in a dark room before, you know how frustrating it can be. This is especially true if you are in an unfamiliar place. [Brian] has attempted to help solve this problem by building a vibrating distance sensor that is intuitive to use.

The main circuit is rather simple. An Arduino is hooked up to both an ultrasonic distance sensor and a vibrating motor. The distance sensor uses sound to determine the distance of an object by calculating how long it takes for an emitted sound to return to the sensor. The sensor uses sounds that are above the range of human hearing, so no one in the vicinity will hear it. The Arduino then vibrates a motor quickly if the object is very close, or slowly if it is far away. The whole circuit is powered by a 9V battery.

The real trick to this project is that the entire thing is housed inside of an old flashlight. [Brian] used OpenSCAD to design a custom plastic mount. This mount replaces the flashlight lens and allows the ultrasonic sensor to be secured to the front of the flashlight. The flashlight housing makes the device very intuitive to use. You simply point the flashlight in front of you and press the button. Instead of shining a bright light, the flashlight vibrates to let you know if the way ahead is clear. This way the user can more easily navigate around in the dark without the risk of being seen or waking up people in the area.

This reminds us of project Tacit, which used two of these ultrasonic sensors mounted on a fingerless glove.


Filed under: Arduino Hacks
Giu
12

Simple Distance Measuring Device

arduino, distance, HC-SR04, Sensor, ultrasonic Commenti disabilitati su Simple Distance Measuring Device 

FTME804IAQMBK1W.MEDIUM

by Samuel_Alexander @ instructables.com:

In this project we are going to learn how to use the HC-SR04 PING))) ultrasonic sensor to measure distance. This sensor is also often used on robots to detect obstacles.

Simple Distance Measuring Device – [Link]

Giu
03

Arduino LCD Project for Measuring Distance with Ultrasonic Sensor

arduino, distance, LCD, ultrasonic Commenti disabilitati su Arduino LCD Project for Measuring Distance with Ultrasonic Sensor 

arduino-lcd

by toptechboy.com:

In LESSON 18 you learned how to use an ultrasonic sensor to measure distance, and in LESSON 19 you learned how to connect an LCD to the arduino. In this lesson we will combine what you have learned to create a circuit for measuring distance, and displaying results on an LCD display.

You can use the schematic below to connect the circuit. If you did LESSON 19, you should already have the LCD hooked up. For more info on connecting to the LCD, and how it works, review LESSON 19. This schematic is for the LCD in the Sparkfun Inventor Kit, or similar LCD. If you have a different LCD, you will have to determine the proper connections. There are some helps in LESSON 19. If you need the ultrasonic sensor, you can pick one up HERE.

Arduino LCD Project for Measuring Distance with Ultrasonic Sensor – [Link]

Apr
30

Distance meter using GPS and Arduino

arduino, distance, distance measurement, gps Commenti disabilitati su Distance meter using GPS and Arduino 

DistanceMeter

Raj @ embedded-lab.com writes:

A group of students at Indiana university has built an Arduino-based distance measuring tool as their class project. It is a handheld device that measures the distance between any two points using the latitude and longitude coordinates (received from GPS satellite) of the points. It provides distance output in Yards and is useful for sports applications, such as in golfing to compute the distance between where a ball is hit and where it ends up.

[via]

Distance meter using GPS and Arduino - [Link]

 

Apr
19

Arduino ultrasonic range finder

arduino, distance, distance measurement, Test/Measurements, ultrasonic Commenti disabilitati su Arduino ultrasonic range finder 

FBPCCKMHTJPA22G.LARGE

Jan_Henrik @ instructables.com writes:

In this project i want to show and explain you a range sensor with ultrasonic and a 20×04 lcd screen. I wrote the code for this project myself and added lots of comments, so that everybody can understand it and use it for other projects (maybe a light range sensor?!). It is easy to build and much more easier to program, it just requires a few cheap parts and can run on battery, for a portable rangefinder.

The maximum rated range is 500 cm, the range is measured 20 times per seccond. It is Displayed on a lcd screen which is 20×4 chars big, it has a custom start message, and it can have a custom design while measuring. It will have a backlight LED and can run on every arduino, which has I²C communication. That mean you can run it on an Arduino nano, which is very small. It also requires 5V so it has to be a 5V version of an Arduino.

Arduino ultrasonic range finder - [Link]

Over the last few years I’ve been writing a few Arduino tutorials, and during this time many people have mentioned that I should write a book. And now thanks to the team from No Starch Press this recommendation has morphed into my new book – “Arduino Workshop“:

shot11

Although there are seemingly endless Arduino tutorials and articles on the Internet, Arduino Workshop offers a nicely edited and curated path for the beginner to learn from and have fun. It’s a hands-on introduction to Arduino with 65 projects – from simple LED use right through to RFID, Internet connection, working with cellular communications, and much more.

Each project is explained in detail, explaining how the hardware an Arduino code works together. The reader doesn’t need any expensive tools or workspaces, and all the parts used are available from almost any electronics retailer. Furthermore all of the projects can be finished without soldering, so it’s safe for readers of all ages.

The editing team and myself have worked hard to make the book perfect for those without any electronics or Arduino experience at all, and it makes a great gift for someone to get them started. After working through the 65 projects the reader will have gained enough knowledge and confidence to create many things – and to continue researching on their own. Or if you’ve been enjoying the results of my thousands of hours of work here at tronixstuff, you can show your appreciation by ordering a copy for yourself or as a gift :)

You can review the table of contents, index and download a sample chapter from the Arduino Workshop website.

Arduino Workshop is available from No Starch Press in printed or ebook (PDF, Mobi, and ePub) formats. Ebooks are also included with the printed orders so you can get started immediately.

LEDborder

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

The post Book – “Arduino Workshop – A Hands-On Introduction with 65 Projects” appeared first on tronixstuff.

Over the last few years I’ve been writing a few Arduino tutorials, and during this time many people have mentioned that I should write a book. And now thanks to the team from No Starch Press this recommendation has morphed into my new book – “Arduino Workshop“:

shot11

Although there are seemingly endless Arduino tutorials and articles on the Internet, Arduino Workshop offers a nicely edited and curated path for the beginner to learn from and have fun. It’s a hands-on introduction to Arduino with 65 projects – from simple LED use right through to RFID, Internet connection, working with cellular communications, and much more.

Each project is explained in detail, explaining how the hardware an Arduino code works together. The reader doesn’t need any expensive tools or workspaces, and all the parts used are available from almost any electronics retailer. Furthermore all of the projects can be finished without soldering, so it’s safe for readers of all ages.

The editing team and myself have worked hard to make the book perfect for those without any electronics or Arduino experience at all, and it makes a great gift for someone to get them started. After working through the 65 projects the reader will have gained enough knowledge and confidence to create many things – and to continue researching on their own. Or if you’ve been enjoying the results of my thousands of hours of work here at tronixstuff, you can show your appreciation by ordering a copy for yourself or as a gift :)

You can review the table of contents, index and download a sample chapter from the Arduino Workshop website.

Arduino Workshop is available from No Starch Press in printed or ebook (PDF, Mobi, and ePub) formats. Ebooks are also included with the printed orders so you can get started immediately.

04/07/2013 – (my fellow) Australians – currently the easiest way of getting a print version is from Little Bird Electronics.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.


Mar
04

A longboard speed and distance computer

arduino hacks, bike computer, distance, longboard, reflectance, speed, transportation hacks Commenti disabilitati su A longboard speed and distance computer 

longboard-speed-distance-comptuer

Why should cyclists have all of the fancy toys? Bicycle computers are very common these days but you won’t find similar hardware for skateboards and longboards. [KobraX22] isn’t taking it lying down. He built this speed and distance computer for his longboard. It doesn’t use very many components and should be easy to install.

The device monitors the rotation of one of the wheels by mounting a reflectance sensor on one of the trucks. It points toward the inside of a wheel which has a piece of black tape on it. Every time the tape passes it prevents the IR led from reflecting back at its paired receiver. This lets the Arduino count the revolutions, which are then paired with the wheel diameter to calculate speed as well as distance traveled. Of course the wheels wear down over time to so frequent riders will have to take new measurements at regular intervals.

[KobraX22] went with a QRB1114 sensor. It costs less than $2 and doesn’t require him to embed a magnet in the wheel like a hall effect sensor setup would have. It also shouldn’t interfere with any other fancy wheel hacks you’ve done, like adding a POV display.

[via Reddit]


Filed under: arduino hacks, transportation hacks
Gen
09

Garage parking monitor guides you in every time

arduino hacks, distance, garage, home hacks, parking, rangefinder, ultrasonic Commenti disabilitati su Garage parking monitor guides you in every time 

THEPARKINGSPOTTER2

The live Adafruit Show and Tell stream from last weekend featured this project put together by [Silent Jeff]. He’s called “Silent” because when it came time to present his project on the show his microphone wasn’t working. As you can see in the video after the break, [PT] and [Ladyada] worked together to explain the project (of which they had no prior knowledge) using a game of charades. This is one of the follow-up images he sent them which details his parking spotter project.

[Ladyada] compliments [Jeff] on the finished look of the device and we agree. Not only does this do a great job of letting a driver know if they have pulled far enough into the garage, but it’s finished appearance ensures it won’t ever look out-of-place. The two silver discs near the lower end of the box are the sensors of an ultrasonic rangefinder. You mount this box so that the sensor is measuring distance between itself and the bumper of your vehicle. As the distance decreases the LEDs change to let you know when to stop. Inside the case you’ll find a voltage regulator and single-chip running the Arduino bootloader. [Jeff] says this is just his second Arduino project and we hope that at this rate we’ll be looking for big things from him in the not too distant future!

This is basically the same idea as cars that use parking assist sensors in the bumper. It’s just attached to the building instead of to the vehicle itself.

[Jeff's] part of the show starts at the 17:46 mark of this video:


Filed under: arduino hacks, home hacks
Dic
23

Sharpy

Charles, composer, distance, electronic, gallery, GinSing, Infrared, instrument, Peck, sensors Commenti disabilitati su Sharpy 

How about a new way to make music? [cpeckmusic] has it’s way to do it, with is project Sharpy.

Sharpy is an electronic instrument that was designed and built by composer Charles Peck. The instrument utilizes three infrared distance sensors to control the sound, which is produced digitally with an Arduino board and GinSing shield. So as users interact with these sensors, there is a clear auditory connection to their physical actions.

Despite having only three sensors, the instrument is capable of a variety of sounds. This is because Sharpy has three possible operating states, each of which assigns a different set of parameters to the three sensors. State 1 is initiated by covering the sensor on the user’s left first. The instrument will then stay in State 1 until no sensors are being covered. Therefore, the user must completely remove their hands form the instrument in order to change states. Concordantly, State 2 is initiated using the middle sensor and State 3 using the sensor on the right. The short improvisation in this video demonstrates a few of these sonic possibilities.

I suggest you to watch the [video] of the live performance. If you’re interested in more works check his official [website]



  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook