Posts | Comments

Planet Arduino

Archive for the ‘jaycar’ Category

Giu
11

Kit review – the Freetronics CUBE4: RGB LED Cube

4x4x4, arduino, argot, cube, freetronics, jaycar, kit, kit review, LED, leonardo, LeoStick, review, RGB, XC4274 Commenti disabilitati su Kit review – the Freetronics CUBE4: RGB LED Cube 

Introduction

LED cubes are a fascinating item, no matter where you come from the allure of blinking LEDs in various patterns is always attractive. And making your own is a fun challenge that most people can do after some experience with electronics hardware. However most people use single-colour LEDs, as wiring up RGB units triples the complexity of the circuit. Until now.

After much anticipation Freetronics have released their CUBE4 RGB LED cube kit – a simple to assemble and completely-customisable RGB LED cube:

cube4off

Unlike other cubes on the market, this one includes an on-board ATmega32u4 microcontroller with Arduino Leonardo-compatible bootloader and a microUSB socket (… and a lot more) – so you don’t need anything extra to get started. And this gives you many more options when you’re ready to expand. But first let’s put it together and then get it working. Furthermore, keep reading to find out how you can have a chance to win your own Cube4.

Assembly

Inside the box are all the parts needed for the kit, even a microUSB cable to power the Cube4 and also communicate with it:

parts

There’s 64 RGB LEDs in that bag, so get ready for some soldering. The base PCB is well laid out, labelled and gives you an idea for the expansion possibilities:

PCBtop

Plenty of room to add your own circuitry – and the bottom:

PCBbottom

As you can see in the image above, there’s an XBee-compatible pinout if you want to add communication via wirless serial link, plenty of prototyping space for your own additions and many other ports are brought out to open pads. There’s even a 5V supply pair to test LEDs, and a blue “power on” LED (which can be deactivated if necessary by cutting a track on the PCB).

The first job is to mount the LEDs on their plane PCBs – there are four, one for each horizontal plant. It’s very important to get the LEDs in the right way round, and there’s markers on the PCB that you can match up the longest leg of the LED with:

LEDinsertdirection

From experience I found it best to insert all the LEDs:

LEDsinserted

…and then do a final mass check of the alignment – which is easy if you hold the plane up to one side and compare the legs, for example:

checkLEDdirection

At this stage it’s a great idea to double-check your LED alignment. After a while you’ll have the LEDs soldered in and trimmed nicely:

LEDssoldered

The next step was getting the vertical sticks aligned in order to hold the LED planes (above). Each stick is for a particular spot on the PCB so check the label on the stick matches the hole on the PCB. It’s incredibly important to make sure you have them perfectly perpendicular to the PCB, so find something like a square-edge or card to help out:

alignstick

Once you have a row of sticks in you can start with a plane then insert a stick on the other side, for example:

firstplanerubberband

Note the use of the elastic band to hold things together – they really help. Then it’s a simple matter of adding the planes and holding it together with another band:

fourplanespresolder

… at which point you can do a final check that all the planes and sticks are inserted correctly. Then solder all the copper spots together and you’re done.

Don’t forget to turn the cube upside-down as there’s soldering to be done on the bottom of the planes as well:

solderupsidedownaswell

 Although it might look a little scary, the final assembly isn’t that difficult – just take your time so it’s right the first time. You can view the following video which describes the entire process:

Once you’re confident that all the soldering has been completed – double-check for joints that aren’t completely bridged with solder as they will affect the operation of the cube. Then you can plug in the USB cable and watch the preloaded test/demonstration sketch in action:

If all your LEDs are working, awesome. If not – check the soldering. If there’s still some rogues – check your individual LEDs. Some of you are probably thinking “well that isn’t too colourful” – the problem is the camera, not the Cube4. If you see it in real life, it’s much better.

Operation

There are two methods of controlling the Cube4. It is delivered with a preloaded sketch that runs the demonstration showed in the video above, and then accepts commands over a serial/USB connection. So you can simply plug it in, fire up a terminal program (or the Arduino IDE serial monitor) and send text commands to do various things. If you type “help ;” the syntax is returned which explains how you can do things (click image to enlarge):

helpscreen

This serial control mode allows control by any type of software that can write to a serial port. Furthermore any other external hardware that can create or introduce serial text can also control the Cube4. For example by mounting an XBee module underneath and linking it to the TX/RX lines gives you a wireless Cube4. By doing so you can control it with a Raspberry Pi or other system.

Furthermore the Cube4 is also an Arduino Leonardo-compatible board in the same way as a Freetronics LeoStick.  With the use of the Cube4 Arduino library you can then create your own sketches which can visualise data with very simple to use functions for the Cube4. There are some great example sketches with the library for some inspiration and fun. Over time I look forward to using the Cube4 in various ways, including adding an Electric Imp IoT device and making another clock (!).

Competition

Would you like the chance to win a Cube4? It’s easy. Clearly print your email address on a postcard, and mail it to:

CUBE4 Competition, PO Box 5435, Clayton 3168, Australia

Entries must be received by the 30th of  July 2013. One postcard will then be drawn at random, and the winner will receive one Cube4 delivered by Australia Post standard air mail. You can enter as many times as you like. We’re not responsible for customs or import duties, VAT, GST, postage delays, non-delivery or whatever walls your country puts up against receiving inbound mail.

More demonstrations

Check out this Argot IoT demonstration.

Conclusion

This is the most approachable RGB LED cube kit on the market, and also the easiest to use. You don’t need to understand programming to try it out – and if you do it’s incredibly versatile. A lot of work has gone into the library, API and hardware design so you’ve got an expandable tool and not just some blinking LEDs. For more information visit the Freetronics website.  Larger photos available on flickr. And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

The CUBE4 in this review is a promotional consideration from Freetronics. In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.


Giu
11

Kit review – the Freetronics CUBE4: RGB LED Cube

4x4x4, arduino, argot, cube, freetronics, jaycar, kit, kit review, LED, leonardo, LeoStick, review, RGB, XC4274 Commenti disabilitati su Kit review – the Freetronics CUBE4: RGB LED Cube 

Introduction

LED cubes are a fascinating item, no matter where you come from the allure of blinking LEDs in various patterns is always attractive. And making your own is a fun challenge that most people can do after some experience with electronics hardware. However most people use single-colour LEDs, as wiring up RGB units triples the complexity of the circuit. Until now.

After much anticipation Freetronics have released their CUBE4 RGB LED cube kit – a simple to assemble and completely-customisable RGB LED cube:

cube4off

Unlike other cubes on the market, this one includes an on-board ATmega32u4 microcontroller with Arduino Leonardo-compatible bootloader and a microUSB socket (… and a lot more) – so you don’t need anything extra to get started. And this gives you many more options when you’re ready to expand. But first let’s put it together and then get it working. Furthermore, keep reading to find out how you can have a chance to win your own Cube4.

Assembly

Inside the box are all the parts needed for the kit, even a microUSB cable to power the Cube4 and also communicate with it:

parts

There’s 64 RGB LEDs in that bag, so get ready for some soldering. The base PCB is well laid out, labelled and gives you an idea for the expansion possibilities:

PCBtop

Plenty of room to add your own circuitry – and the bottom:

PCBbottom

As you can see in the image above, there’s an XBee-compatible pinout if you want to add communication via wirless serial link, plenty of prototyping space for your own additions and many other ports are brought out to open pads. There’s even a 5V supply pair to test LEDs, and a blue “power on” LED (which can be deactivated if necessary by cutting a track on the PCB).

The first job is to mount the LEDs on their plane PCBs – there are four, one for each horizontal plant. It’s very important to get the LEDs in the right way round, and there’s markers on the PCB that you can match up the longest leg of the LED with:

LEDinsertdirection

From experience I found it best to insert all the LEDs:

LEDsinserted

…and then do a final mass check of the alignment – which is easy if you hold the plane up to one side and compare the legs, for example:

checkLEDdirection

At this stage it’s a great idea to double-check your LED alignment. After a while you’ll have the LEDs soldered in and trimmed nicely:

LEDssoldered

The next step was getting the vertical sticks aligned in order to hold the LED planes (above). Each stick is for a particular spot on the PCB so check the label on the stick matches the hole on the PCB. It’s incredibly important to make sure you have them perfectly perpendicular to the PCB, so find something like a square-edge or card to help out:

alignstick

Once you have a row of sticks in you can start with a plane then insert a stick on the other side, for example:

firstplanerubberband

Note the use of the elastic band to hold things together – they really help. Then it’s a simple matter of adding the planes and holding it together with another band:

fourplanespresolder

… at which point you can do a final check that all the planes and sticks are inserted correctly. Then solder all the copper spots together and you’re done.

Don’t forget to turn the cube upside-down as there’s soldering to be done on the bottom of the planes as well:

solderupsidedownaswell

 Although it might look a little scary, the final assembly isn’t that difficult – just take your time so it’s right the first time. You can view the following video which describes the entire process:

Once you’re confident that all the soldering has been completed – double-check for joints that aren’t completely bridged with solder as they will affect the operation of the cube. Then you can plug in the USB cable and watch the preloaded test/demonstration sketch in action:

If all your LEDs are working, awesome. If not – check the soldering. If there’s still some rogues – check your individual LEDs. Some of you are probably thinking “well that isn’t too colourful” – the problem is the camera, not the Cube4. If you see it in real life, it’s much better.

Operation

There are two methods of controlling the Cube4. It is delivered with a preloaded sketch that runs the demonstration showed in the video above, and then accepts commands over a serial/USB connection. So you can simply plug it in, fire up a terminal program (or the Arduino IDE serial monitor) and send text commands to do various things. If you type “help ;” the syntax is returned which explains how you can do things:

helpscreen

This serial control mode allows control by any type of software that can write to a serial port. Furthermore any other external hardware that can create or introduce serial text can also control the Cube4. For example by mounting an XBee module underneath and linking it to the TX/RX lines gives you a wireless Cube4. By doing so you can control it with a Raspberry Pi or other system.

Furthermore the Cube4 is also an Arduino Leonardo-compatible board in the same way as a Freetronics LeoStick.  With the use of the Cube4 Arduino library you can then create your own sketches which can visualise data with very simple to use functions for the Cube4. There are some great example sketches with the library for some inspiration and fun. Over time I look forward to using the Cube4 in various ways, including adding an Electric Imp IoT device and making another clock (!).

More demonstrations

Check out this Argot IoT demonstration.

Conclusion

This is the most approachable RGB LED cube kit on the market, and also the easiest to use. You don’t need to understand programming to try it out – and if you do it’s incredibly versatile. A lot of work has gone into the library, API and hardware design so you’ve got an expandable tool and not just some blinking LEDs. For more information visit the Freetronics website.  Larger photos available on flickr. And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

LEDborder

The CUBE4 in this review is a promotional consideration from Freetronics. In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

The post Kit review – the Freetronics CUBE4: RGB LED Cube appeared first on tronixstuff.

Feb
12

Kit Review – SC/Jaycar Garbage and Recycling Reminder

Electronics, garbage, jaycar, KC5518, kit review, pic, PIC16LF88, recycling, reminder, silicon chip, tronixstuff, tutorial Commenti disabilitati su Kit Review – SC/Jaycar Garbage and Recycling Reminder 

Introduction

Every month Australian electronics magazine Silicon Chip publishes a variety of projects, and in January 2013 they published the “Garbage Recycling Reminder” by John Clarke. Jaycar picked it up and now offers a kit, the subject of our review. This kit solves the old but recurring (for some) problem – which bin to put out, and when!

The kit offers a simple way of keeping track of the bin schedule, and is suitable for up to four bins. With a simple user-interface consisting of a button and LED for each bin – once setup the reminder can easily be used by anyone. It allows for weekly, fortnightly and alternate fortnights – which is perfect for almost every council’s schedule.

Assembly

The kit arrives in typical Jaycar fashion:

and includes everything you need, including an enclosure, front panel sticker and battery:

 The PCB is well done, and routed nicely to fit inside the enclosure:

Now to get started. The instructions included are a reprint of the magazine article, and as Jaycar have modified the kit a little, their notes and photos are also included. However there isn’t anything to worry about.

Assembly is straight-forward, the only annoying thing was the assumption that the constructor will use off-cuts for jumper links. Instead – use your own header pins:

Furthermore, when soldering in the resistors and 1N914 diodes next to the LEDs – leave them floating so you can move them a bit to make way for the LEDs:

This is also a good time to check the buttons line up with the holes drilled into the front panel (a template is included with the instructions):

At this point you can fit the LEDs to the PCB, and carefully match it up with the drilled lid. You are supplied with a red, green, yellow and blue LED – which generally match the bin lid colours from various councils. Screw the PCB into the lid then solder the LEDs in – after double-checking they protrude out of lid. Then insert the battery and make a final test:

If you made it that far, you can apply the sticker included to illustrate the front panel. To save time we cut the sticker up for a minimalist look. However you now need to set-up the jumpers before closing the box up. There is a set of three pins for each bin, and a jumper can bridge the first two or last two pins, or none. If you don’t bridge them – that bin is weekly. If you bridge the first two – that bin is fortnightly from the setup day. If you bridge the last two – that bin is fortnightly from the next week, for example:

So you can easily set it up for a weekly bin and an alternating-fortnight pair of bins. Once you’ve setup the jumpers, screw up the box and you’re done.

Operation

Once you’ve set the jumpers up as described earlier, you just need to execute the programming function at the time you want the reminders to start every week. For example, if your weekly collection is 4 AM on a Thursday – do the programming around 5pm Wednesday night – that will then be the time the LEDs start blinking. When you put out the appropriate bin, press the button below the matching bin LED to stop the blinking. You can control the number of bins – so if you only have two bins, only two LEDs will activate. The blinking period is eighteen hours, and you can adjust the start time via the buttons.

How it works

The circuit is based around a Microchip PIC16LF88 and has an incredibly low current draw, around 15 uA when the LEDs aren’t blinking. This allows the circuit to run for over two years on the included 3v coin cell battery. The internal clock is kept accurate to around 10 minutes per year using an external 32.768 kHz crystal. After a period of use the battery voltage may drop to a level insufficient to adequately power the LEDs, so each one has a voltage doubler by way of a diode and capacitor – very clever. This ensures LED brightness even with a low battery. For complete details purchase the kit or a copy of the January 2013 edition of Silicon Chip.

Now it sits next to the kettle, waiting for bin night…

Conclusion

Personally I needed this kit, so I’m a little biased towards it. However – it’s simple and it works. Kudos to John Clarke for his project. You can purchase it from Jaycar and their resellers, or read more about it in the January 2013 edition of Silicon Chip. Full-sized images available on flickr. This kit was purchased without notifying the supplier.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.


Feb
12

Introduction

Every month Australian electronics magazine Silicon Chip publishes a variety of projects, and in January 2013 they published the “Garbage Recycling Reminder” by John Clarke. Jaycar picked it up and now offers a kit, the subject of our review. This kit solves the old but recurring (for some) problem – which bin to put out, and when!

The kit offers a simple way of keeping track of the bin schedule, and is suitable for up to four bins. With a simple user-interface consisting of a button and LED for each bin – once setup the reminder can easily be used by anyone. It allows for weekly, fortnightly and alternate fortnights – which is perfect for almost every council’s schedule.

Assembly

The kit arrives in typical Jaycar fashion:

and includes everything you need, including an enclosure, front panel sticker and battery:

 The PCB is well done, and routed nicely to fit inside the enclosure:

Now to get started. The instructions included are a reprint of the magazine article, and as Jaycar have modified the kit a little, their notes and photos are also included. However there isn’t anything to worry about.

Assembly is straight-forward, the only annoying thing was the assumption that the constructor will use off-cuts for jumper links. Instead – use your own header pins:

Furthermore, when soldering in the resistors and 1N914 diodes next to the LEDs – leave them floating so you can move them a bit to make way for the LEDs:

This is also a good time to check the buttons line up with the holes drilled into the front panel (a template is included with the instructions):

At this point you can fit the LEDs to the PCB, and carefully match it up with the drilled lid. You are supplied with a red, green, yellow and blue LED – which generally match the bin lid colours from various councils. Screw the PCB into the lid then solder the LEDs in – after double-checking they protrude out of lid. Then insert the battery and make a final test:

If you made it that far, you can apply the sticker included to illustrate the front panel. To save time we cut the sticker up for a minimalist look. However you now need to set-up the jumpers before closing the box up. There is a set of three pins for each bin, and a jumper can bridge the first two or last two pins, or none. If you don’t bridge them – that bin is weekly. If you bridge the first two – that bin is fortnightly from the setup day. If you bridge the last two – that bin is fortnightly from the next week, for example:

So you can easily set it up for a weekly bin and an alternating-fortnight pair of bins. Once you’ve setup the jumpers, screw up the box and you’re done.

Operation

Once you’ve set the jumpers up as described earlier, you just need to execute the programming function at the time you want the reminders to start every week. For example, if your weekly collection is 4 AM on a Thursday – do the programming around 5pm Wednesday night – that will then be the time the LEDs start blinking. When you put out the appropriate bin, press the button below the matching bin LED to stop the blinking. You can control the number of bins – so if you only have two bins, only two LEDs will activate. The blinking period is eighteen hours, and you can adjust the start time via the buttons.

How it works

The circuit is based around a Microchip PIC16LF88 and has an incredibly low current draw, around 15 uA when the LEDs aren’t blinking. This allows the circuit to run for over two years on the included 3v coin cell battery. The internal clock is kept accurate to around 10 minutes per year using an external 32.768 kHz crystal. After a period of use the battery voltage may drop to a level insufficient to adequately power the LEDs, so each one has a voltage doubler by way of a diode and capacitor – very clever. This ensures LED brightness even with a low battery. For complete details purchase the kit or a copy of the January 2013 edition of Silicon Chip.

Now it sits next to the kettle, waiting for bin night…

Conclusion

Personally I needed this kit, so I’m a little biased towards it. However – it’s simple and it works. Kudos to John Clarke for his project. You can purchase it from Jaycar and their resellers, or read more about it in the January 2013 edition of Silicon Chip. Full-sized images available on flickr. This kit was purchased without notifying the supplier.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

The post Kit Review – SC/Jaycar Garbage and Recycling Reminder appeared first on tronixstuff.

Gen
16

Introduction

Every month Australian electronics magazine Silicon Chip publishes a variety of projects, and in December 2012 they published the USB Power Monitor by Nicholas Vinen. Jaycar picked it up and now offers a kit, the subject of our review. This small device plugs inline between a USB port and another device, and can display the current drawn, power and voltage at the USB port with a large LCD module. This is useful when you’re experimenting with USB-powered devices such as Arduino projects or curious how external USB devices can affect your notebook computer’s battery drain.

Assembly

The kit arrives in typical Jaycar fashion:

… everything necessary is included with the kit:

The instructions arrive as an updated reprint of the original magazine article, plus the usual notes from Jaycar about warranty and their component ID sheet which is useful for beginners. The PCB is quite small, and designed to be around the same size as the LCD module:

As you can see below, most of the work is already done due to the almost exclusive use of SMD components:

That’s a good thing if you’re in a hurry (or not the best with surface-mount work). Therefore the small amount of work requires is simply to solder in the USB sockets, the button and the LCD:

It took less than ten minutes to solder together. However – take careful, careful note of the LCD. There isn’t a pin 1 indicator on the module – so instead hold the LCD up to the light and determine which side of the screen has the decimal points – and line it up matching the silk-screening on the PCB. Once finished you can add the clear heatshrink to protect the meter, but remember to cut a small window at the back if you want access to the ICSP pins for the PIC microcontroller:

How it works

The USB current is passed through a 50 mΩ shunt resistor, with the voltage drop being measured by an INA282 current shunt monitor IC. The signal from there is amplified by an op amp and then fed to the ADC of a PIC18F45K80 microcontroller, which does the calculations and drives the LCD. For complete details purchase the kit or a copy of the December 2012 edition of Silicon Chip.

Operation

First you need to calibrate the unit – when first used the meter defaults to calibration mode. You simply insert it into a USB port. then measure the USB DC voltage brought out to two pads on the meter. By pressing the button you can match the measured voltage against the display as shown below – then you’re done.

Then you simply plug it in between your USB device and the socket. Press the button to change the measurement. The meter can measure the following ranges:

For an operational example. consider the next three images are from charging my phone – with the power, current and voltage being shown:

“P” for power…

current in mA

“b” for bus voltage

If you want to use the USB ports on the right-hand side of your computer, just press the button while inserting the meter – and it flips around:

Finally – here’s a quick video of the meter at work, whilst copying a file to an external USB hard drive:

Conclusion

I really like this – it’s simple and it works. Kudos to Nicholas for his project. You can purchase it from Jaycar and their resellers, or read more about it in the December 2012 edition of Silicon Chip. Full-sized images available on flickr. This kit was purchased without notifying the supplier.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.


Gen
16

Introduction

Every month Australian electronics magazine Silicon Chip publishes a variety of projects, and in December 2012 they published the USB Power Monitor by Nicholas Vinen. Jaycar picked it up and now offers a kit, the subject of our review. This small device plugs inline between a USB port and another device, and can display the current drawn, power and voltage at the USB port with a large LCD module. This is useful when you’re experimenting with USB-powered devices such as Arduino projects or curious how external USB devices can affect your notebook computer’s battery drain.

Assembly

The kit arrives in typical Jaycar fashion:

… everything necessary is included with the kit:

The instructions arrive as an updated reprint of the original magazine article, plus the usual notes from Jaycar about warranty and their component ID sheet which is useful for beginners. The PCB is quite small, and designed to be around the same size as the LCD module:

As you can see below, most of the work is already done due to the almost exclusive use of SMD components:

That’s a good thing if you’re in a hurry (or not the best with surface-mount work). Therefore the small amount of work requires is simply to solder in the USB sockets, the button and the LCD:

It took less than ten minutes to solder together. However – take careful, careful note of the LCD. There isn’t a pin 1 indicator on the module – so instead hold the LCD up to the light and determine which side of the screen has the decimal points – and line it up matching the silk-screening on the PCB. Once finished you can add the clear heatshrink to protect the meter, but remember to cut a small window at the back if you want access to the ICSP pins for the PIC microcontroller:

How it works

The USB current is passed through a 50 mΩ shunt resistor, with the voltage drop being measured by an INA282 current shunt monitor IC. The signal from there is amplified by an op amp and then fed to the ADC of a PIC18F45K80 microcontroller, which does the calculations and drives the LCD. For complete details purchase the kit or a copy of the December 2012 edition of Silicon Chip.

Operation

First you need to calibrate the unit – when first used the meter defaults to calibration mode. You simply insert it into a USB port. then measure the USB DC voltage brought out to two pads on the meter. By pressing the button you can match the measured voltage against the display as shown below – then you’re done.

Then you simply plug it in between your USB device and the socket. Press the button to change the measurement. The meter can measure the following ranges:

For an operational example. consider the next three images are from charging my phone – with the power, current and voltage being shown:

“P” for power…

current in mA

“b” for bus voltage

If you want to use the USB ports on the right-hand side of your computer, just press the button while inserting the meter – and it flips around:

Finally – here’s a quick video of the meter at work, whilst copying a file to an external USB hard drive:

Conclusion

I really like this – it’s simple and it works. Kudos to Nicholas for his project. You can purchase it from Jaycar and their resellers, or read more about it in the December 2012 edition of Silicon Chip. Full-sized images available on flickr. This kit was purchased without notifying the supplier.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

The post Kit Review – SC/Jaycar USB Power Monitor appeared first on tronixstuff.



  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook