Posts | Comments

Planet Arduino

Archive for the ‘mit’ Category

In many parts of the world the COVID-19 pandemic is causing shortages in hospital space, staff, medical supplies, and equipment. Severe cases may require breathing support, but there are only so many ventilators available. With that in mind, MIT is working on FDA approval of an emergency ventilator system (E-Vent). They have submitted the design to the FDA for fast track review. The project is open source, so once they have approval the team will release all the data needed to replicate it.

The design is actually made simple by using something that is very common: a manual resuscitator. You have doubtlessly seen these on your favorite medical show. It is the bag someone squeezes while the main character struggles valiantly to save their patient. Of course, having someone sit and squeeze the bag for days on end for thousands of people isn’t very practical and that’s where they’ve included an Arduino-controlled motor to automate the process.

The tricky thing is that, forcing air into your lungs isn’t always good for them. Even healthy lungs can be stressed by too much inflation and people who already have lung problems may be able to handle only a tenth of what a healthy set can manage. That’s why the device needs a closed loop control system that monitors pressure from the patient and modifies the flow.

Any solution should be utilized only in a healthcare setting with direct monitoring by a clinical professional. While it cannot replace an FDA-approved ICU ventilator, in terms of functionality, flexibility, and clinical efficacy, the MIT E-Vent is anticipated to have utility in helping free up existing supply or in life-or-death situations when there is no other option.

Further, any low-cost ventilator system must take great care regarding providing clinicians with the ability to closely control and monitor tidal volume, inspiratory pressure, bpm, and I/E ratio, and be able to provide additional support in the form of PEEP, PIP monitoring, filtration, and adaptation to individual patient parameters. We recognize, and would like to highlight for anyone seeking to manufacture a low-cost emergency ventilator, that failing to properly consider these factors can result in serious long-term injury or death.

This isn’t a unique idea, and the MIT team provides links to other similar projects. The team’s work is not totally online yet, because they are still testing. For example, the acrylic apparatus that squeezes the bag may not hold up to the repetitive stress very well. The team may look to other projects that predated the crisis. For example, have a look at the AIR device presented at a conference last year in the video below. There’s also this interesting document from a Johns Hopkins resident.

Almost as interesting as the device itself is the comments people are leaving about the design. It is a great example of how the Internet opens up totally new ways to collaborate on a critical problem like this one.

Of course, we’ve seen collaboration on COVID-19 testing, too. If you want to help, you can add your compute power to the virtual supercomputer folding proteins to help find a cure.

An embedded MEMS sensor might be lots of fun to play with on your first foray into the embedded world–why not deploy a whole network of them? Alas, the problem with communicating with a series of identical sensors becomes increasingly complicated as we start needing to handle the details of signal integrity and the communication protocols to handle all that data. Fortunately, [Artem], [Hsin-Liu], and [Joseph] at MIT Media Labs have made sensor deployment as easy as unraveling a strip of tape from your toolkit. They’ve developed SensorTape, an unrollable, deployable network of interconnected IMU and proximity sensors packaged in a familiar form factor of a roll of masking tape.

Possibly the most interesting technical challenge in a string of connected sensor nodes is picking a protocol that will deliver appreciable data rates with low latency. For that task the folks at MIT Media labs picked a combination of I²C and peer-to-peer serial. I²C accomodates the majority of transmissions from master to tape-node slave, but addresses are assigned dynamically over serial via inter-microcontroller communication. The net effect is a fast transfer rate of 100 KHz via I²C with a protocol initialization sequence that accommodates chains of various lengths–up to 128 units long! The full details behind the protocol are in their paper [PDF].

With a system as reconfigurable as SensorTape, new possibilities unfold with a solid framework for deploying sensors and aggregating the data. Have a look at their video after the break to get a sense of some of the use-cases that they’ve uncovered. Beyond their discoveries, there are certainly plenty others. What happens when we spin them up in the dryer, lay them under our car or on the ceiling? These were questions we may never have dreamed up because the tools just didn’t exist! Our props are out to SensorTape for giving us a tool to explore a world of sensor arrays without having to trip over ourselves in the implementation details.

via [CreativeApplications]


Filed under: Arduino Hacks, news

The Reality Editor (Credit: Fluid Interface Group/MIT)Augmented reality has yet to find a foothold in widespread applications, but MIT has just released an AR app that allows you to control IoT devices.

Read more on MAKE

The post MIT’s Reality Editor Controls IoT Devices via Augmented Reality appeared first on Make: DIY Projects, How-Tos, Electronics, Crafts and Ideas for Makers.

The Reality Editor (Credit: Fluid Interface Group/MIT)Augmented reality has yet to find a foothold in widespread applications, but MIT has just released an AR app that allows you to control IoT devices.

Read more on MAKE

The post MIT’s Reality Editor Controls IoT Devices via Augmented Reality appeared first on Make: DIY Projects, How-Tos, Electronics, Crafts and Ideas for Makers.

Giu
05

Open Hardware Summit: call for papers is open!

Announcements, events, Hardware, mit, open hardware, open source, Summit Commenti disabilitati su Open Hardware Summit: call for papers is open! 

open hardware 2013

The Open Source Hardware Association invites submissions for the fourth annual Open Hardware Summit, to be held September 6, 2013 at the Massachusetts Institute of Technology.

The Open Hardware Summit is the world’s first comprehensive conference on open hardware; a venue to discuss and draw attention to the rapidly growing Open Source Hardware movement. The Open Hardware Summit is a venue to present, discuss, and learn about open hardware of all kinds. The summit examines open hardware and its relation to other issues, such as software, design, business, law, and education.

They are seeking proposals for talks, posters, and demos from individuals and groups working with open hardware and related areas.  Submissions are due by JUNE 21, 2013. Please see the complete call for papers for additional details.

Topics of interest for the summit include, but are not limited to:

Digital fabrication

Means of supporting collaboration and community interaction

Open source business and legal models

Manufacturing models

Open Source Hardware Licenses

Software/Hardware

Sustainability

Communities of Practice

Other topics related to the intersection openness and hardware

ohs2013

Apr
13

Beat Feet: set your beats and effects with gestures using Arduino

bangalore, mit, music, wearable, Wearable Computing, workshop Commenti disabilitati su Beat Feet: set your beats and effects with gestures using Arduino 

 

bare feet

One of the teams participating to the MIT Media Labs Design Innovation workshop at PESIT Bangalore last January built something called  Beat Feet using Arduino Uno:

We designed a system which will allow musicians, guitarists and keyboardists to set the beats according to the music they play, without getting up from their place or even without lifting their hands off the instrument! Yes, simply by tapping foot at a constant rate. Don’t believe it?

Beat Feet allows musicians to add drum and guitar effects  using only feet gestures and wearable sensors. Check the details of the project on this website and watch the video below to see it in action!

Feb
15

Beginner’s Android/Arduino example shows the power of App Inventor

Android, app inventor, arduino hacks, bluetooth, graphical, mit Commenti disabilitati su Beginner’s Android/Arduino example shows the power of App Inventor 

app-inventor-android-bluetooth-example

This is a simple project. It uses an Android device to switch an LED driven by the Arduino. Connectivity is provided by the Bluetooth module inserted in the breadboard. But one look at the UI on the Android device and you might think this is anything but simple. The truth is that [Kerimil] didn’t spend forever learning Java and programming the app. Instead he’s showing off the power of  App Inventor to get your Android controls up and running fast.

Check out the third button down; when was the last time you added voice commands to your project? It’s worth clicking through to see just how simple that portion was. App Inventor — a Google cast-out that is now maintained by MIT — is a graphical tool that unlocks the power of an Android handset to those with the most basic of programming understanding. For instance, the voice controls shown off after the break are provided by a single bracket which uses conditional statements to ‘listen’ for the words on, off, and blink. You’ll find the voice recognition diagram after the break as well.

You could try to go completely graphical with this project. There’s the option of programming the Arduino side of the project in a similar way.

app-inventor-voice-controls


Filed under: arduino hacks


  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook