Posts | Comments

Planet Arduino

Archive for the ‘game’ Category

Capture the flag can be fun, but Karel Bousson has put a new spin on the game that allows you to compete against neighbors over who can keep a single item — a modified tool case — in their possession the longest.

The box contains an Arduino Mega that interfaces with an RFID reader to enable the current owner to scan in, plus a GPS module for location data. Additionally, an LDR sensor can be incorporated to set the brightness of an LED matrix on the outside.

Data passed along to a Raspberry Pi for time of possession tracking via LoRa with The Things Network. This also runs a server that shows game info to others playing, meaning that you’ll have to be very careful to keep it around!

Code for the project is available on GitHub.

In the early ’90s, Sega shipped its Game Gear console with a falling-block puzzle game called Columns. This Tetris-like game invited users to match colored “jewels” on the ground with lines of three new colors that drop from above. Michael A. Maynard envisioned building his own portable version of Columns at the time, but without electronics like Arduino boards and addressable RGB LEDs, the project just wasn’t in the cards.

Nonetheless, after years of consideration, he’s finally been able to create such a handheld. He used an Uno for development, which was replaced by a Nano in the current iteration. 

His system manipulates the falling jewels through a 6×13 LED matrix, with a three-LED preview display, seeven-segment LEDs for game stats, and dual-motor haptic feedback. The game even features stereo sound, with effects, and music produced via dual MP3 player modules.

[Michael Pick] calls himself the casual engineer, though we don’t know whether he is referring to his work clothes or his laid back attitude. However, he does like to show quick and easy projects. His latest? A little portable Tetris game for $9 worth of parts. There is an Arduino Pro Mini and a tiny display along with a few switches and things on a prototyping PC board. [Michael] claims it is a one day build, and we imagine it wouldn’t even be that much.

Our only complaint is that there isn’t a clear bill of material or the code. However, we think you could figure out the parts pretty easy and there are bound to be plenty of games including Tetris that you could adapt to the hardware.

The display looks suspiciously like an SSD1306 display which is commonly cloned. so that answers one question. These are just less than an inch of screen, but if you buy them from China that eats up almost half of the $9 budget. The Arduino is probably another $3. The other parts are cheap, but it is easy to imagine you might exceed $9 by a bit if you try to duplicate this.

Just from looking at the video, the code looks a lot like Tiny Tetris by [AJRussel], though there are a few others out there if you look. The rest should be pretty easy to puzzle out. Maybe [Michael] will add a link to the code, a bill of materials, and some specific wiring instructions.

Of course, if you just want Tetris, grab your transistor tester. We’ve even seen smaller versions of Tetris given away as business cards.

Yu-Gi-Oh! and other similar card games can be quite popular, but actually finding a group to play with can be challenging. Online games, on the other hand, have their advantages yet render your deck pretty much useless. As a way to combine these two worlds, Augusto Masetti has created a prototype Dual Disk System that will allow you to play with real cards in a virtual playfield.

To play, participants attach NFC stickers inside a card sleeve, which are scanned by an NFC reader controlled by an Arduino Uno. The card ID is then compared to the YGOProDeck API database via a computer, giving players a tactile element to this virtual competition.

Masetti’s project is still a work in progress, though we can’t wait to see the final version!

Bob Clagett likes making holiday decorations. This year, however, he wanted to create something that didn’t just look nice, but was also interactive. What he came up with is a giant Christmas tree that is actually a video game!

His tree-shaped matrix uses seven rows of RGB LEDs attached to the top of the structure to drop simulated snowflakes, represented by white lights. The player moves a dot on the bottom right and left to dodge these falling flakes via a pair of large arcade-style buttons. When the controlling Arduino Mega sees that the player’s position is the same as a snowflake, the game ends.

As Clagett’s community can attest, the project looks like a lot of fun! Code for the build is available on GitHub.

To make our Christmas tree game light up in the way that we intend, we have to be able to control each LED in an entire strand of lights. Traditional lights just have power run to colored bulbs, which blink or stay lit all together. We found a strand of individually addressable LEDs that are made for outdoor use. This means that each light has a small circuit board attached to each bulb that will receive power and a data signal from a micro-controller. I’m using an Arduino as the micro-controller to send out a signal to each specific light among the many strands.

Our game is very simple, there is a “player” that is restrained to the lowest level of lights in our tree-shaped matrix. That “player” can move left or right to avoid falling “snow.” When the game is played, the player will move while white “snow” lights fall randomly from the top of the tree-shaped matrix. If the “player” and the “snow” occupy the same space on the matrix in the arduino code, you lose. When the game isn’t being played, I used a simple LED flash library to create a Christmasy-looking color series that flashes until someone activates the game.

Now that the game code is working, the lights are blinking appropriately, and the control buttons are moving the “player” around, it’s time to make it look like a tree. To do this, Josh and I drilled holes at even space along some thin PVC material and fed in the lights. Covering those light boards with ping pong balls will help diffuse the LED light and give the whole tree a polished and clean look. These seven LED light boards are then connected to a hub at the top of a 10-foot metal pole. To keep the pole firmly planted on the ground, I poured a bucket of concrete and fixed a pole holder into it.

Escape rooms are awesome for people who like to solve puzzles, see how things work, or enjoy a mystery. Everyone reading this falls into at least one of those categories. We enjoy puzzles and mysteries, but we have a fondness for seeing how things work. To this end, we direct your attention to [doktorinjh]’s “Bomb Disarming Puzzle in a Suitcase” Game, which is a mysterious puzzle box he built himself. I guess the mystery is mostly in the gameplay, which you can watch below because he shows us his build photos and describes the hardware inside.

At its heart is an Arduino Mega, a wise choice since our back-of-the-napkin estimation puts his I/O count over forty-five and the Mega can handle them all with a few pins to spare. Working inside the confines of a briefcase came with its own challenges, but we adore the way he used the hexagon theme in the top panel to allow for knob clearance. It was so subtle that we almost missed it.

The escape room theme is delightful, and we appreciate the mix of games, aesthetics, and techno-trickery in many forms.

To experience an escape room, you normally need a rather large dedicated space. This project, however, by creator Jason R, takes this physical clue-solving concept and shrinks it down to fit within a small suitcase!

To play, participants have to work their way through a series of problems, supplied in the ‘TOP SECRET’ documentation attached to and inside the device, connecting jumpers, flipping switches, and turning knobs as needed. 

A computerized voice guides you along the way, with LEDs and an LCD panel providing visual output as you save the day. The game is controlled via an Arduino Mega, while power supplied by a rechargeable USB power bank.

I created an “escape room-esque” game that is contained within a small suitcase. In total, there are about 15-20 puzzles and sub-puzzles that need to be solved in order to disarm the “explosives”. Players are given 60 minutes to arrange puzzles, decipher clues hidden in QR codes, connect cities in maps to form numbers, decode morse signals, and other similar things. 

As a kid you may have played Operation, but certainly never anything like this nine-foot board from SPOT Technology. This device is not only impressively large, but assists doctors in their surgical pursuits with a CNC gantry setup to pull out obstructions.

In the game, amateur surgeons control the system using a small arcade cabinet next to the patient (Sergio), moving a magnetic gripper with a joystick and buttons. A camera rides along and transmits images to the cabinet, hopefully leading to a clean extraction. If the gripper isn’t aligned correctly, a button on the plunger reports the doctors error, and Sergio’s nose lights up red to indicate a failed surgery. Two Arduino Megas are implemented, one on the CNC playfield itself, another in the cabinet.

The project will be on display at the Philadelphia Mini Maker Faire on October 6th if you’d like to see it in person.

Consider the game of chess. It’s a game that flexes one’s “mental muscles” rather than relying on brute strength, but if you don’t have the ability to actually move the pieces, things get a bit more challenging. If you’re playing against another human opponent, he or she could move for you based on what you say, but with this chess machine by ‘diyguypt,’ the board does the job for you!

The system uses an Android-based Arduino Voice Control app to take in commands, and passes this information along to the Arduino Mega concealed under the board via an HC-05 Bluetooth module. It then controls a pair of stepper motors to move an electromagnet into place, which pull the pieces across the grid as if by magic! 

Code and build info are available in the project’s write-up, and the two videos below shed a little more light on how it works.

If you’d like to bring the air hockey arcade experience home with you, then look no further than this project by Kousheek Chakraborty and Satya Schiavina, or ‘Technovation.’ 

Cleverly, the scaled-down game table uses a household vacuum cleaner blower attachment to provide air pressure, sending little jets of air through a grid of laser-cut holes on the acrylic playing surface.

LED lights embedded in the sides add a bit more excitement to the build, and points are tallied with an Arduino Uno-based LCD score display. A pair of buttons are used to register a points for either player, hopefully eliminating arguments over who is ahead as the game progresses!



  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook