Posts | Comments

Planet Arduino

Archive for the ‘game’ Category

While video games have grown more and more complex over the last few decades, TWANG takes things in the opposite direction as an Arduino Mega-based 1D dungeon crawler consisting of an RGB LED strip.

The player—a dot—is controlled via an accelerometer mounted to a door spring used as a joystick. With it, the player can move forwards, backwards, and attack by “twanging” the spring to make it vibrate. The LEDs display a wide array of colors, including representations of glowing lava, water, and player disintegration when a mistake is made.

TWANG is inspired by the Line Wobbler game from Robin Baumgarten, and beautifully implemented as shown in the video below by Barton Dring. Code for the build can be found here, and 3D print files for the housing/joystick are also available.

A delightful version of a clever one-dimensional game has been made by [Critters] which he calls TWANG! because the joystick is made from a spring doorstop with an accelerometer in the tip. The game itself is played out on an RGB LED strip. As a result, the game world, the player, goal, and enemies are all represented on a single line of LEDs.

How can a dungeon crawler game be represented in 1D, and how is this unusual game played? The goal is for the player (a green dot) to reach the goal (a blue dot) to advance to the next level. Making this more difficult are enemies (red dots) which move in different ways. The joystick is moved left or right to advance the player’s blue dot left or right, and the player can attack with a “twang” motion of the joystick, which eliminates nearby enemies. By playing with brightness and color, a surprising amount of gameplay can be jammed into a one-dimensional display!

Code for TWANG! is on github and models for 3D printing the physical pieces are on Thingiverse. The video (embedded below) focuses mainly on the development process, but does have the gameplay elements explained as well and demonstrates some slick animations and sharp feedback.

Using a spring doorstop as a controller is neat as heck as well as intuitive, but possibly not quite as intuitive as using an actual car as a video game controller.

After booting up his RetroPie system, [jfrmilner] had the distinct feeling that something was off. Realizing that the modern Xbox 360 controller didn’t fit right when reliving the games of his youth, he rounded up all his old controllers to make sure he always had the right gamepad for the game.

Wanting to keep the controllers unmodified — so they could still be used on the original systems — he had to do a bit of reverse-engineering and source some controller sockets before building his controller hub. Using shift-in registers, shift-out registers, and some multiplexers, he designed a large circuit selector — which acts as a shield for an Arduino Micro — so all the controllers remain connected. A potentiometer allows him to select the desired controller and a few arcade buttons which access RetroPie shortcuts really round out the hub. Check out the demo after the break!

[jfrmilner] kept the controllers relevant to the games he would be playing, but we hope there’s some room to include a controller in rug format in his build. Of course, there’s always the option of Jerry-rigging old systems to use your preferred retro gamepad.

Filed under: Arduino Hacks, Raspberry Pi

For those who love to hike, no excuse is needed to hit the woods. Other folks, though, need a little coaxing to get into the great outdoors, which is where geocaching comes in: hide something in the woods, post clues to its location online, and they will come. The puzzle is the attraction, and doubly so for this geocache with an Arduino-powered game of Hangman that needs to be solved before the cache is unlocked.

The actual contents of a geocache are rarely the point — after all, it’s the journey, not the destination. But [cliptwings]’ destination is likely to be a real crowd pleaser. Like many geocaches, this one is built into a waterproof plastic ammo can. Inside the can is another door that can only be unlocked by correctly solving a classic game of Hangman. The game itself may look familiar to long-time Hackaday readers, since we featured it back in 2009. Correctly solving the puzzle opens the inner chamber to reveal the geocaching goodness within.

Cleverly, [cliptwings] mounted the volt battery for the Arduino on top of the inner door so that cachers can replace a dead battery and play the game; strangely, the cache entry on (registration required) does not instruct players to bring a battery along.

It looks like the cache has already been found and solved once since being placed a few days ago in a park north of Tucson, Arizona. Other gadget caches we’ve featured include GPS-enabled reverse caches, and a puzzle cache that requires IR-vision to unlock.

Thanks to [Dan Wagoner], who built the game upon which this is based, for the tip.


Filed under: Arduino Hacks, misc hacks


We are excited to announce that UnlimitedHand is now an officially licensed Arduino AtHeart product. Created by Japanese startup H2L, the wearable controller straps around your forearm like an Ace bandage and allows you to actually touch and feel things within the gaming world.

UnlimitedHand consists of a 3D motion sensor, an array of muscle sensors, a multi-channel electronic muscle stimulator, and a vibration motor, which together, enable you to interact with objects and characters in VR. It does this by syncing the movement of a user’s hand and fingers with its virtual counterpart, and contracting the muscles on the wearer’s forearm to simulate haptic feedback.

With UnlimitedHand, not only will you be able to experience the ricochet of a gunshot or pet animals, but also hack various customized gestures thanks to its full compatibility with the Arduino IDE.

According to H2L:

Arduino, with their commitment to open-source, has reached out with their technology to muster a great force of Makers and inventors. This omni-present community has no doubt supported us in many ways during the development of UnlimitedHand. By joining the program, we can now present our results back to the community.

UnlimitedHand–which surpassed its Kickstarter goal in less than a day–is now available for purchase on Amazon and its website, as well as in retail stores throughout Japan.

[Marcelo Maximiano’s] son had a school project. He and a team of students built “The Pyramid’s Secret“–an electronic board game using the Arduino Nano. [Marcelo] helped with the electronics, but the result is impressive and a great example of packaging an Arduino project. You can see a video of the game, below.

In addition to the processor, the game uses a WT5001M02 MP3 player (along with an audio amplifier) to produce music and voices. There’s also a rotary encoder, an LCD, a EEPROM (to hold the quiz questions and answers), and an LED driver. There’s also a bunch of LEDs, switches, and a wire maze that requires the player to navigate without bumping into the wire (think 2D Operation).

In addition to the code and hardware diagrams, there is a PDF file on GitHub describing more about the game. It is in Portuguese, though, so most of us will probably need a little translation help. However, a Brazillian site did have an English post about the game, which might be a good place to start.

You might not want to replicate the game, but it is a great example of how much an Arduino can do with some simple externals devices and some attention to packaging.

Sadly, most of our projects look more like this game (no offense to that hacker). Projects like this are way more likely to spark young people’s interest than a blinking LED or a capacitor meter. If you are more in the mood for arcade play, you can also check out Arduinocade.

Filed under: Arduino Hacks

Kids love Minecraft, and a clever educator can leverage that love to teach some very practical skills. The summer class offered by the Children’s Museum in Bozeman Montana would have blown my mind if such a thing existed when we were younger. (Rather than begging one of the dads in my Boy Scout Troop to pirate Visual Studio for me, which was delivered in the form of an alarmingly tall stack of CDs.) The kids in Bozeman get to learn hardware, software, their integration, and all while playing Minecraft.

Minecraft is an immersive universe that has proven to suck in creative minds. It’s the bait that pulls the kids into the summer class but Serialcraft delivers on making the learning just as addictive. This is accomplished by providing students with physical objects that are tied to the Minecraft world in meaningful ways we just haven’t seen before (at least not all at one time). On the surface this adds physical LEDs, toggle switches, potentiometers, and joysticks to the game. But the physical controls invite understanding of the mechanisms themselves, and they’re intertwined in exciting ways, through command blocks and other in-game components that feel intuitive to the students. From their understanding of the game’s mechanics they understand the physical objects and immediately want to experiment with them in the same way they would new blocks in the game.

The thing that makes this magic possible is a Minecraft mod written by [John Allwine], who gave us a demonstration of the integration at Maker Faire Bay Area 2016. The mod allows the user to access the inputs and output of the Arduino, in this case a Pololu A-Star 32U4, from within Minecraft. For the class this is all packaged nicely in the form of a laser cut controller. It has some LEDs, two joysticks, buttons, potentiometers, and a photosensor.

As you can see in the video below the break, it’s really cool. The kids have a great time with it too. For example, [John] showed them how they can attach their unique controller to a piston in the world. Since this piston can be controlled by them alone, they quickly figured out how to make secret safe rooms for their items.

Another troublesome discovery, was that the photo transistor on the controller set the light level in the game world by altering the time of day. Kids would occasionally get up and change the world from day to night, by turning the lights in the room on or off. A feature that has a certain appeal for any Minecraft player, is rigging one of the LEDs on the controller to change brightness depending on proximity to a creeper.

There’s a lot more to the library, which is available on GitHub. The kids (and adults) have a great time learning to link the real world with the world’s most accessible fantasy world creation kit.  Great work [John]!

Filed under: Arduino Hacks


The Interaction Awards  published the shortlisted projects for 2016 and up to five finalists in each category will be announced during the event on Friday evening, March 4, 2016. In the Expressing category, showcasing projects enabling self expression and/or creativity there is a project called Step representing an innovative and engaging way of approaching music production for children between 6 and 100 years old.

Step runs on an Arduino and has been created by Federico Lameri, Sandro Pianetti at the Master of Advanced Studies in Interaction Design in Lugano under the supervision of Massimo Banzi and Giorgio Olivero of Todo.

To prototype the user experience we’ve used an Arduino Leonardo connected to a processing sketch that handle the recording and playback features. Using a Mux Shield 2 we managed connecting 25 IR sensors, 16 LEDs, 1 knob and a button to a single Arduino board. We needed a quick and effective way to test the experience and by using Arduino we managed to design and build the whole product in three weeks.

Most of the music toys on the market are trying to fake the sounds and the experience of real instruments. Step has a different approach as it’s designed to give children the opportunity to create real loops and beats using whatever sounds they like from objects of everyday life.

Players can record any sounds and match them with  coloured tags, and then  create melodies, loops and and beats by placing tags on the track and by adjusting the tempo!

Check the video below to see it in action:



Toronto-based collaborative duo Hopkins Duffield created a gaming environment running on Arduino Mega in which the player battles a laser wielding A.I. security system gone awry. It’s like being in an action movie, walking in a pitch black room filled with the hollow sound of a machine breathing and a series of red laser fences slicing through the fog-filled air!

Laser Equipped Annihilation Protocol (The L.E.A.P. Engine) is a an installation that :

explores the personality of a snarky and mysterious game sentience who has infected a room with technological systems that challenge players and collect data. With a limited amount of time, the player must pass through a complicated series of changing and alternating laser patterns without tripping any of the lasers in order to deactivate the system and win the game. If the player trips a laser or if the timer runs out, it’s game over.

The gaming installation uses Max 6, Max For Live, an Arduino Mega 2560 R3 and custom electronic circuits. They also used a special modification of Lasse Vestergaard’s and Rasmus Lunding’s ArduinoInOutForDummies designed to allow communication between Arduino 2560 and Max 7. In Max, laser patterns are written using MIDI.

Take a look at the video to discover how they made it:


Explore This Elegant Wooden Arduino Puzzle Box

arduino, electronic, Electronics, Fun & Games, game, leds, pontentiometer, puzzle, wood, Woodworking Commenti disabilitati su Explore This Elegant Wooden Arduino Puzzle Box 

Minigame_1If you’re like me, you find yourself fighting the urge to push every button, flip every switch, and turn every knob you see. This arcade-style puzzle box was designed to satiate those deep-seated desires. Powered by an Arduino, with completely custom wooden enclosure and components, this is a wood shop geek’s first […]

Read more on MAKE

The post Explore This Elegant Wooden Arduino Puzzle Box appeared first on Make: DIY Projects, How-Tos, Electronics, Crafts and Ideas for Makers.

  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook