Posts | Comments

Planet Arduino

Archive for the ‘pinball’ Category

Ever since he was a young boy, [Tyler] has played the silver ball. And like us, he’s had a lifelong fascination with the intricate electromechanical beasts that surround them. In his recently-completed senior year of college, [Tyler] assembled a mechatronics dream team of [Kevin, Cody, and Omar] to help turn those visions into self-playing pinball reality.

You can indeed play the machine manually, and the Arduino Mega will keep track of your score just like a regular cabinet. If you need to scratch an itch, ignore a phone call, or just plain want to watch a pinball machine play itself, it can switch back and forth on the fly. The USB camera mounted over the playfield tracks the ball as it speeds around. Whenever it enters the flipper vectors, the appropriate flipper will engage automatically to bat the ball away.

Our favorite part of this build (aside from the fact that it can play itself) is the pachinko multi-ball feature that manages to squeeze in a second game and a second level. This project is wide open, and even if you’re not interested in replicating it, [Tyler] sprinkled a ton of good info and links to more throughout the build logs. Take a tour after the break while we have it set on free play.

[Tyler]’s machine uses actual pinball machine parts, which could quickly ramp up the cost. If you roll your own targets and get creative with solenoid sourcing, building a pinball machine doesn’t have to be a drain on your wallet.

Once upon a time, there was a music venue/artist collective/effects pedal company that helped redefine industry in Williamsburg, Brooklyn. That place was called Death By Audio. In 2014, it suffered a death by gentrification when Vice Media bought the building that DBA had worked so hard to transform. From the ashes rose the Death By Audio Arcade, which showcases DIY pinball cabinets made by indie artists.

Their most recent creation is called A Place To Bury Strangers (APTBS). It’s built on a 1959 Gottlieb Mademoiselle table and themed around a local noise/shoegaze band of the same name that was deeply connected to Death By Audio. According to [Mark Kleeb], this table is an homage to APTBS’s whiz-bang pinball-like performance style of total sensory overload. Hardly a sense is spared when playing this table, which features strobe lights, black lights, video and audio clips of APTBS, and a fog machine. Yeah.

[Mark] picked up this project from a friend, who had already cut some wires and started hacking on it. Nearly every bit of the table’s guts had to be upgraded with OEM parts or else replaced entirely. Now there’s a Teensy running the bumpers, and another Teensy on the switches. An Arduino drives the NeoPixel strips that light up the playfield, and a second Uno displays the score on those sweet VFD tubes. All four micros are tied together with Python and a Raspi 3.

If you’re anywhere near NYC, you can play the glow-in-the-dark ball yourself on July 15th at Le Poisson Rouge. If not, don’t flip—just nudge that break to see her in action. Did we mention there’s a strobe light? Consider yourself warned.

Want to get into DIY pinball on a smaller scale? Build yourself a sandbox and start playing.

Have you ever wanted to roll your own pinball machine? It’s one of those kinds of builds where it’s easy to go off the deep end. But if you’re just getting your feet wet and want to mess around with different playfield configurations, start with something like [joesinstructables]’ Arduino Laser Pinball.

It’s made from meccano pieces attached with standoffs, so the targets are easy to rearrange on the playfield. [joesinstructables] wanted to use rollover switches in the targets, but found that ping pong balls are much too light to actuate them. Instead, each of the targets uses a tripwire made from a laser pointing at a photocell. When the ping pong ball enters the target, it breaks the beam. This triggers a solenoid to eject the ball and put it back into play. It also triggers an off-field solenoid to ring a standard front-desk-type bell one to three times depending on the target’s difficulty setting.

The flippers use solenoids to pull the outside ends of levers made from meccano, which causes the inside ends to push the ball up and away from the drain. Once in a while a flipper will get stuck, which you can see in the demo video after the break. An earlier version featured an LCD screen to show the score, but [joesinstructables] can’t get it to work for this version. Can you help? And do you think a bouncy ball would actuate a rollover switch?

This isn’t the first pinball machine we’ve covered. It’s not even the first one we’ve covered that’s made out of meccano. Here’s an entire Hacklet devoted to ’em. And remember when an Arduino made an old table great again?


Filed under: Arduino Hacks
Lug
28

Pinball Table Gets New Lease of Life With Arduino

arduino, arduino hacks, pinball Commenti disabilitati su Pinball Table Gets New Lease of Life With Arduino 

Forget all of this video game nonsense: pinball is the real king of gaming. After all, it involves large pieces of metal flying around at high speed. [retronics] agrees: he has resurrected an old Briarwood Aspen pinball table using an Arduino.

pinball-table-repairWhen he bought the table, he found that the electronics had been fried: many of the discrete components on the board had been burnt out. So, rather than replace the individual parts, he gutted the table and replaced the logic board with an Arduino Mega that drives the flippers, display and chimes that make pinball the delightful experience it is. Fortunately, this home pinball table is well documented, so he was able to figure out how to rewire the remaining parts fairly easily, and how to recreate the scoring system in software.

His total cost for the refurb was about $300 and the junker was just $50 to start with. Now for $350 you can probably find a working pinball table. But that’s not really the point here: he did it for the experience of working with electromechanical components like flippers and tilt switches. We would expect nothing less from the dude who previously built an Android oscilloscope from spare parts.


Filed under: Arduino Hacks
Lug
15

New Project: Convert a Pinball Score Reel into a Clock

arduino, Electronics, pinball, Real-time clock, solenoid Commenti disabilitati su New Project: Convert a Pinball Score Reel into a Clock 

pinball clock featured imageSolenoids (a type of electromagnet) are at the heart of pinball machines, and at one time, many other machines. They work by inducing a magnetic field using a coil of copper wire. This makes them ideal for pushing or pulling mechanical things fast and with force. They have become unnecessary […]

Read more on MAKE

The post Convert a Pinball Score Reel into a Clock appeared first on Make: DIY Projects, How-Tos, Electronics, Crafts and Ideas for Makers.

Ago
20

Building an entire pinball machine from just the playfield

arduino, arduino hacks, pinball, Raspberry Pi, solenoids Commenti disabilitati su Building an entire pinball machine from just the playfield 

It all started  when [Iancole] bought a Fireball Home edition playfield on some famous auction website for $135. Originally, he had the intent of lighting the lamps with an Arduino, framing it, and hanging it on the wall of his office — which often happens with old pinball parts. But then his boys asked if he “could make it play”.

[Iancole] managed to find the pinball schematics online and started designing the electronics required by the many LEDs, solenoids and switches. As the LEDs and switches are on the same matrix, he chose a simple Arduino to cycle through them, giving the player the impression that the lights are constantly on. [Iancole] originally planned on using his raspberry Pi to control the solenoids, but he later switched to another Arduino because of the precise timing required.

Therefore, his Pi was used as the heart of the machine. It is interfaced to the two Arduinos to read states and send commands while running the game program, displaying HD graphics on a 24″ screen, playing music and game event sounds. All the electronics are proudly displayed on the backbox, and many developments are planned for it. Also, the machine will be on display at the Orlando Mini Maker Faire on October 5th!


Filed under: Arduino Hacks, Raspberry Pi
Mar
05

Wireless pinball controller for tablet gaming

Android, android hacks, arduino, arduino hacks, bluesmirf, bluetooth, debounce, nand, pinball Commenti disabilitati su Wireless pinball controller for tablet gaming 

wireless-pinball-controller

This wooden box is a wireless pinball controller and tablet stand. The idea is to set it on a workbench to give you some of the thrill of standing and playing the real thing. [Jeff] has been rather addicted to playing a pinball app on Android lately, and started the journey because he needed a way to give his thumbs some relief.

An Arduino monitors buttons on either side of this wooden controller. [Jeff] is new to working with hardware (he’s a Linux Kernel developer by trade) and was immediately struck with button debouncing issues. Rather than handle this in software (we’ve got a super-messy thread on that issue with our favorite at the bottom) he chose a hardware solution by building an SR latch out of two NAND gates.

With the inputs sorted out he added a BlueSMiRF board to the project which allowed him to connect a Nexus 7 tablet via Bluetooth. At this point he ran into some problems getting the device to respond to his control as if it were an external keyboard. His stop-gap solution was to switch to a Galaxy Tab 10.1 which wasn’t throwing cryptic errors. Hopefully he’ll fix this in the next iteration which will also include adding a plunger to launch the pinball, a part which just arrived in the mail as he was writing up this success.

We’ve embedded his quick demo video after the break.


Filed under: android hacks, arduino hacks


  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook