Posts | Comments

Planet Arduino

Archive for the ‘Arduino Yún’ Category

wetterhaus

The “Enchanted Cottage” is a project by Andy Clark with the aim of upgrading a traditional  german “wetter haus”  with a new mechanism and electronics running on Arduino Yún:

The mechanics were replaced with a servo and 3D printed parts designed to make the movement linear rather than arcing as in the traditional approach. The figures were fitted with magnets so that they could move without any obvious form of propulsion.
The electronics were based on an Arduino Yún, custom prototyping shield and an Infineon RGB LED driver shield. The whole thing is powered by a rechargable LiPo battery and a module from AdaFruit. Because the Arduino was deep in the middle of the house, I used fibre optics to bring the light to the top panel. A sensor was added into the roof so you could simply tap it to get it to update the forecast for you.

The project was build over a period of 16 weeks, the mechanical aspects were completed first and the 3D printing took several goes to get it right. The electronics build was fairly straightforward but fitting everything onto the proto shield was challenging and the high clearance for the Yún was also a challenge. The software was written as I went along with demo programs created to test each part. Getting the Yún to work on low power was fairly straightforward but getting a secure and validated HTTPS connection took a few attempts. tried to put as much of the processing into the Python script so that the C++ code was just handling the control. All in all a challenging project that pushed the Yún to it’s limits.

Learn more about the project on Andy’s blog.

Infomatic-1024x724

Jul
31

Open Hybrid Gives you the Knobs and Buttons to your Digital Kingdom

arduino hacks, Arduino Yún, augmented reality, internet hacks, mit media lab, open hybrid Comments Off on Open Hybrid Gives you the Knobs and Buttons to your Digital Kingdom 

With a sweeping wave of complexity that comes with using your new appliance tech, it’s easy to start grumbling over having to pull your phone out every time you want to turn the kitchen lights on. [Valentin] realized that our new interfaces aren’t making our lives much simpler, and both he and the folks at MIT Media Labs have developed a solution.

open-hybrid-light-color-pickerOpen Hybrid takes the interface out of the phone app and superimposes it directly onto the items we want to operate in real life. The Open Hybrid Interface is viewed through the lense of a tablet or smart mobile device. With a real time video stream, an interactive set of knobs and buttons superimpose themselves on the objects they control. In one example, holding a tablet up to a light brings up a color palette for color control. In another, sliders superimposed on a Mindstorms tank-drive toy become the control panel for driving the vehicle around the floor. Object behaviors can even be tied together so that applying an action to one object, such as turning off one light, will apply to other objects, in this case, putting all other lights out.

Beneath the surface, Open Hybrid is developed on OpenFrameworks with a hardware interface handled by the Arduino Yún running custom firmware. Creating a new application, though, has been simplified to be achievable with web-friendly languages (HTML, Javascript, and CSS). The net result is that their toolchain cuts out a heavy need for extensive graphics knowledge to develop a new control panel.

If you can spare a few minutes, check out [Valentin’s] SolidCon talk on the drive to design new digital interfaces that echo those we’ve already been using for hundreds of years.

Last but not least, Open Hybrid may have been born in the Labs, but its evolution is up to the community as the entire project is both platform independent and open source.

Sure, it’s not mustaches, but it’s definitely more user-friendly.


Filed under: Arduino Hacks, internet hacks
Jul
23

Make Batman dance at the rythm of a gas sensor

arduino, Arduino Yún, Featured, tutorial, Yun Comments Off on Make Batman dance at the rythm of a gas sensor 

relayr-cloud

If you feel like experimenting with connected objects, a good idea could be to start from a funny project explained step-by-step in a tutorial. In the video below you can follow the instructions given by Dana, Documentation Hero at relayr, using an Arduino Yún, a gas sensor and relayr cloud to make a little Batman-shaped toy dance according to data:

I used a moisture sensor as an input and a servo motor as an output that I can control through a demo web application made using the browser-sdk.

The code in this repository will enable you to use your Arduino to build a prototype of a device and connect it to the relayr platform, much like the one created with the Particle.io Photon. It contains instructions and a demo app which will make your first few steps in the relayr-Arduino prototyping realm easy and fun!

 

Jul
10

LED Shirt Lights Up When You’re Bombarded by Bluetooth

arduino, Arduino Yún, bluetooth, Electronics, LED shirt, Matt Martin Comments Off on LED Shirt Lights Up When You’re Bombarded by Bluetooth 

LED-shirt-smaller-for-featured-imageAs more and more of our technology becomes automatic, wireless, invisible, and connected, it simultaneously has a greater potential to slip from our immediate attention. Matt Martin, a Masters student at Auckland University of Technology in New Zealand, is most interested in how technology affects us. He designed “Wearable Beacon,” […]

Read more on MAKE

The post LED Shirt Lights Up When You’re Bombarded by Bluetooth appeared first on Make: DIY Projects, How-Tos, Electronics, Crafts and Ideas for Makers.

Jun
29

Arduino Yún controlling a 12 mentos-coke installation!

arduino, Arduino Yún, coke, David Cuartielles, Featured, installation, mentos, Yun Comments Off on Arduino Yún controlling a 12 mentos-coke installation! 

arduinoYunmentos
What happens in Zaragoza when you mix David Cuartielles, a group of teens, an Arduino Yún, 12 cokes and a bunch of mentos?

Here it is:

Jun
22

plant_post

Selfie Plant is an interactive installation taking pictures of itself using Arduino Yún, Facebook Graph APIs and then uploads them to Facebook. It was developed by a group of students at the Copenhagen Institute of Interaction Design during “The secret life of objects” course held also by Arduino.cc team. The final prototype was placed in the exhibition of the school, to see the interaction of the audience with it and you can see the result on Facebook.

facebookselfie

The Selfie Plant is an attempt to provoke some thoughts above genre of expression. The Selfie Plant expresses itself in the form of nice-looking selfies, which it clicks according to its mood, weather or occasion. It mimics human behaviour, by giving it’s best pose and adjusting the camera angle to take the perfect selfie.

 

In the documentation on Github you can find all the details of the project composed by an Arduino Yún, controlling 2 servo motors and adjusting the positions of the plant and the camera stick; a python script (facebook.py) which communicates with Facebook’s graph API to post the captured photos on plant’s Facebook profile. In addition you’ll need also a LED Matrix, a Bread Board and 5 Volt Battery.

Here’s a preview of the diagram:

selfiediagram

 

Jun
08

Building a quadcopter running on Arduino Yún

arduino, Arduino Yún, Drones, Featured, Motors, OpenWrt, PID, Yun Comments Off on Building a quadcopter running on Arduino Yún 

Comelicottero

Comelicottero is a quadcopter based on Arduino Yún created during the Master in Computer Science at the Universita’ degli Studi of Milan (Italy) by Simone Castellani, Giovanni Intorre and Andrea Toscano:

The idea was to build a drone able to be controlled through WiFi from any PC, tablet or smartphone . Comelicottero is equipped with an accelerometer and a gyroscope for the stability obtained by a PID-based control system. Since Servo library is too slow for the quadcopter dynamics, an hardware PWM was implemented to obtain a 400Hz PWM signal.

The communication between the ground station on a PC and the quadcopter relies on WiFi and, in order to get better results, Bridge library was replaced with an efficient python script on OpenWRT-Yun. On top of that all the code was written to maximise Arduino Yún capabilities. The Navigation System has been designed, simulated on PC, implemented and tested. The autonomous navigation is going through an additional testing due to magnetometer interferences with motors’ magnetic field.

The user can control and monitor data coming from the drone using a gamepad attached to a laptop with a custom software installed.

Comelicottero_PC_Ground_Station

The sketch and all the documentation will be soon available on GitHub and released with GNU license. In the meanwhile follow their Youtube Channel for updates.

 

Comelicottero_Wiring

Apr
22

Wire Your Arduino Sensors to the Cloud with Temboo Streaming

arduino, Arduino Yún, Featured, streaming, temboo, Yun Comments Off on Wire Your Arduino Sensors to the Cloud with Temboo Streaming 

temboo-streaming-screenshot-arduino-sms-2

Our friends at Temboo just introduced a new way to log data from an Arduino Yún to the cloud. Called Streaming, it lets you visually select the sensors attached to your Arduino that you have gathering data, and then stream that data to the cloud IoT platform of your choice.

temboo-streaming-graphic-arduino

Streaming also makes it easy to switch where you’re sending your data once your application is running, without requiring any hardware or software updates. Right now, Streaming works with Microsoft’s Power BI and Google’s BigQuery, but Temboo will be continuing to add more platforms in the future. As with Temboo’s other Arduino programming tools, Streaming lets you generate all the code you need for your application right in your browser, and tailors that code to the parameters that you specify. It makes it much easier to store sensor data from your Arduino in the cloud, and to analyze the datasets that you build.

This video shows you how it works:

temboo-streaming-ide-arduino

Mar
07

Encrypting messages with Cuckoo and Arduino Yún

arduino, Arduino Yún, encryption, Featured, temboo, Yun Comments Off on Encrypting messages with Cuckoo and Arduino Yún 

cuckoo

Jochen Maria Weber is a Researcher and Designer at the intersection of Interaction- and Industrial Design. He shared with us Project Cuckoo, a project running on Arduino Yún and looking at our interactions with intercepted social networks and how alternative ways of communicating might change them:

Twitter, Facebook, Google+ and co. collect our data and are forced to have a backdoor for state surveillance. Therefore Cuckoo encrypts messages into randomly generated words, meanings and noise in order to scatter them over multiple communication networks simultaneously. Each letter of an original message gets translated into complex forms of certain length forming new sentences. Those sentences get posted to aforementioned social networks, next to randomly generated noise-sentences for distraction. The encryption method can be changed with every new message. Any receiving Cuckoo-unit following the respective social network accounts can filter and decrypt the important posts according to their encryption method and time stamp. Cuckoo combines social networks to build a hidden one on top of their infrastructure. An egg in the others’ nests.

Cuckoo uses an Arduino YUN to connect wirelessly as a stand-alone device to the internet. It also does the en- and decryption of all messenges and made it comfortable to connect to Twitter, Skype and Tumblr API with Temboo.

Take a look at the video on Cuckoo’s website.

cuckoo-yun

According to [Squonk42], nope. And we think he’s probably right.

The Yun is an Arduino Leonardo with an Atheros AR9331 WiFi SoC built in. It’s a great idea, pairing the Arduino with a tiny WiFi router that’s capable of running OpenWRT.  But how is this no longer Open Source Hardware? Try getting an editable board layout. You can’t.

Or at least [Squonk42] couldn’t. In Sept. 2013, [Squonk42] posted up on the Arduino forums requesting the schematics and editable design files for the Arduino Yun, and he still hasn’t received them or even a response.

Now this dude’s no slouch. He’s responsible for the most complete reverse-engineering of the TP-Link TL-WR703N pocket router, which is, not coincidentally, an Atheros AR9331-based reference design. And this is where the Arduini ran into trouble, [Squonk42] contends.

[Squonk42]’s hypothesis is that Arduino must have done what any “sane” engineer would do in this case when presented with a super-complex piece of hardware and a potentially tricky radio layout: just use the reference design (Atheros AP-121). That’s what everyone else in the industry did. And that’s smart, only the rest of the consumer electronics industry isn’t claiming to be Open Source Hardware while the reference design is protected by an NDA.

So it looks like Arduino’s hands are tied. They, or their partner Dog Hunter, either signed the NDA or downloaded the PDF of the reference design that’s floating around on the Interwebs. Either way, it’s going to be tough to publish the design files under a Creative Commons Attribution Share-Alike license.

Is this a change of strategy for the Arduino folks or did they just make a mistake? We won’t know until they respond, and that answer’s a year and a half in coming. Let’s see what we can do about that. And who knows, maybe Arduino can lean on Atheros to open up their reference design? It’s already an open secret at best.

But before you go out lighting up your righteous Open Source Hardware pitchforks and sharpening up your torches, read through [Squonk42]’s case and then dig through the primary sources that he’s linked to make up your own mind. You’ll make your case more eloquently if you’re making it yourself.

Good luck, [Squonk42]! We hope you at least get your answer. Even if you already know it.


Filed under: Arduino Hacks


  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook