Posts | Comments

Planet Arduino

Archive for the ‘Yun’ Category

conditions-temboo

Last week Temboo just added new Conditions features to its IoT Mode interface, making it even easier to connect your Arduino to the Internet of Things! Now, the functionality of Temboo’s Device Coder has been extended to all 2000+ Choreos in the Temboo Library, meaning that data collected from sensors attached to an Arduino Yún can be used to trigger any cloud process, and responses from the cloud can be used to trigger all sorts of hardware actions on your board.

Using IoT Mode on the Temboo website, you can automatically generate ready-to-run Arduino code to execute Choreos from your board without having to write a single line of code yourself—just specify which board and shield you’re using and what Choreo you’d like to run, and all the necessary code will be generated immediately in your browser. And you can also now visually specify what sort of hardware inputs and outputs you would like to use: the code to connect them to your Choreo will be generated as well.

The visual interface includes a pin selector tool that lets you choose which pins you want to activate and how you want them to interact with the Choreo you are running. The pin selector identifies the pins on your board that are available, and also indicates whether those pins are configured to work with digital or analog I/O. Like the generated code itself, the pin selector interface will change to reflect the board and shield you’ve chosen to work with.

temboo-conditions-screenshot-arduino

Conditions make it quick and easy to build a massive range of IoT applications, like a thermometer that sends SMS alerts, or a motor that runs when it receives an email. Just specify how you want your pins to interact with the web services you are using, and thanks to Conditions, what you specify will be reflected in a complete, production-ready program generated instantly in your browser. Try it out, and email hey@temboo.com to let them know what you think!

tembooYun

cuckoo

Jochen Maria Weber is a Researcher and Designer at the intersection of Interaction- and Industrial Design. He shared with us Project Cuckoo, a project running on Arduino Yún and looking at our interactions with intercepted social networks and how alternative ways of communicating might change them:

Twitter, Facebook, Google+ and co. collect our data and are forced to have a backdoor for state surveillance. Therefore Cuckoo encrypts messages into randomly generated words, meanings and noise in order to scatter them over multiple communication networks simultaneously. Each letter of an original message gets translated into complex forms of certain length forming new sentences. Those sentences get posted to aforementioned social networks, next to randomly generated noise-sentences for distraction. The encryption method can be changed with every new message. Any receiving Cuckoo-unit following the respective social network accounts can filter and decrypt the important posts according to their encryption method and time stamp. Cuckoo combines social networks to build a hidden one on top of their infrastructure. An egg in the others’ nests.

Cuckoo uses an Arduino YUN to connect wirelessly as a stand-alone device to the internet. It also does the en- and decryption of all messenges and made it comfortable to connect to Twitter, Skype and Tumblr API with Temboo.

Take a look at the video on Cuckoo’s website.

cuckoo-yun

citymemory

Maker Faire Rome video interviews – “What have you built with Arduino?” – A couple of new protagonists for our short series:

  • Collective City Memory – Wearable Arduino Tech, university project by Assunta Matassa
  • Insettoteca – Remote-controlled Terrarium by Hacklab Terni

 

Explore playlist on Youtube >>

arduinoLightsxmas

December is finally here and we can start thinking about indoor or outdoor decorations for the holiday. Christmas lights are an excellent way to light up any event and a user on instructables wanted to be able to control the lights remotely with text messages.

Check his 12-step tutorial  and take a look at the bill of materials:

  • An Arduino Yún – You could use another Arduino with a Wifi Shield though.
  • A Protoshield with (or without) a tiny breadboard
  • A regular breadboard will work as well, but will be less compact.
    If you want to solder more, you can just use a small circuit board instead.
  • A 5V relay
  • A piezo buzzer
  • Wires
  • A battery operated Christmas decoration (It’s not even Thanksgiving, so I’m using a Halloween decoration)
  • A Temboo account
  • A Twilio account

 

  • ArduinoYun-lights

tumblr_inline_nbjvwkqaDW1rxqn91

The connected birdhouse is a project prototyped during a workshop ran by Massimo Banzi at Boisbuchet, last August in France. It was developed using Arduino Yún, by Valentina Chinnici, who shared with us the project, and two other students taking part to  the week of learning-by-doing around the theme of  the Internet of Trees.

They redesigned a traditional object, a wooden birdhouse to be placed outdoor, and connected it to a lamp shaped like a nest, to be placed indoor:

The connected birdhouse was in fact an interactive object able to communicate to the nest/lamp the presence of a bird inside the house, and accordingly to a color coded signal was giving also some informations about the size of the bird itself. In the event of a bird entering into the house, the nest/lamp remotely controlled via WiFi by an Arduino Yún, was turned on. The nest/lamp received the notification from the birdhouse translating it firstly with a rainbow effect. After few seconds the light changed according to the weight of the bird (green, yellow or red).

The LED strip used for the nest lamp was an Adafruit Neopixel strip controlled by an Arduino Yún.

On this blog you can find the sketch to make it work and create one yourself.

ArduinoYun

A new release of OpenWrt-Yún was announced today on Arduino Forum by Federico Fissore and you can download it from this page.

1.4.2 includes both bug fixes and new stuff.
We fixed some glitches in the webpanel (a bug was found by wildpalms: thank you!).
The OpenWRT Image Builder and the software produced by the http://allseenalliance.org/ is now available for download.

Compared to 1.4.1 this release contains:

  • Web panel
    Fixed wrong JSONP serialization. See details on Github
    Fixed a javascript error in webpanel login page

The complete list of changes is available here.

 

arduinoPlant

Next 21st of September Arduino Tour is finally landing in London for a one-day workshop, starting at 10am at The Maker Works London, UK. (max. 18 people).

This edition of the official Arduino workshop is focused on the world of the Internet of Things and will allow participants to experiment with a botanical kit including an Arduino YÚN, plants and sensors. The workshop teaches you how to turn your plants and virtually any object into connected, responsive elements using Arduino YÚN.

Arduino YÚN is the combination of a classic Arduino Leonardo and a small Linux computer, able to connect to a network or Internet via Ethernet or WiFi. Arduino boards are able to read inputs – light on a sensor, a finger on a button, or even a Twitter message – and turn it into an output – activating a motor, turning on an LED, publishing something online.

Check the program and book your participation >>

YunShield_2-500x358

by Edwin Chen @ open-electronics.org:

The model of this shield named Yun Shield, the feature of this shield is as its name. User can add this shield into Arduino (Leonardo, UNO, MEGA2560 etc) and “turn” the Arduino into device which has similiar features as Arduino Yun: support remote upgrade and use the Bridge library.

With this shield, user can easy to set up communcation between Arduino and Internet (via ethernet , wifi or 3g etc) and add support for USB flash, video. The detail user guide/ manual can be found in the dragino website and most Arduino Yun Sketch / examples can reuse with this Shield. This shield is under production and will be ready within one months time.

Add Linux, WiFi, Ethernet and USB to Arduino - [Link]

ArduinoYun

Tom Igoe some days ago wrote an interesting post about Arduino Yún on his blog.  We post it here as it could be useful to the Arduino Community.

————————–

Recently, Federico Fissore added node.js to the package repository for the Arduino Yún. Here’s how you get node to communicate with the Arduino processor on the Yún via the Bridge library.

To do this, you’ll need an Arduino Yún, a microSD card, a microUSB cable and a wifi connection. You should be familiar with the basics of the Arduino Yún and node.js in order to get the most out of this post.

All of the code for this post can be found on my GitHub repository.

First you’ll need to install node on the Yún. Make sure you’ve upgraded to the current Yún software image and have connected to the internet via wifi. Then ssh into your Yún, or connect to the command line interface using the the YunSerialTerminal sketch, and issue the following commands:


$ opkg update
$ opkg install node

That’s it. Now you have node.js onboard. You can check that it’s okay by checking the version:

$ node -v

You should get the version number in reply.

Once you’ve got that working, you’ll undoubtedly want to communicate with the Yún’s Arduino processor from node. You can do this using the Bridge library. On a microSD drive, make a directory for your node scripts. I called mine /arduino/node. Then insert it into your Yún. For reference, its path from the command line is /mnt/sda1/arduino/node.

Note: The Yún automatically treats the microSD card’s /arduino/www/ directory as a public web directory. Anything you put in there will be served out as static HTML. So you may not want to put your node scripts in this directory, so they’re not visible via the browser. That’s why I created a node directory at the same level as the www directory, but outside it.

Read the complete post at this link>>

ArduinoYun and Yaler

Explore this tutorial  demonstrating how the Arduino Yún can be controlled from anywhere with any internet connected web browser. The solution is provided by Bo Peterson using the Yaler service which means that the Yún can be reached from any network without knowing the IP-address, and without any port forwarding on the router where the Yún is connected.

A common problem in home automation and internet of things applications is that it is difficult to reach devices connected behind wifi routers from the outside. There are different approaches to overcome this problem:

  • Port forwarding and static ip addresses. This solution requires the user of the connected device to know how to configure a router and have access to router administration which is not always possible. A Yun tutorial with port forwarding is found here.
  • Polling is a technique where the connected device at regular intervals checks with an external server if the device should take action. This solution requires no configuration of the router but it creates extra network traffic and response delays.
  • A third way is to use WebSockets which is a way of providing real time full-duplex communication over TCP. Spacebrew is a good open source toolkit for connected devices using WebSockets. Autobahn is another infrastructure that can be used.
  • Reverse HTTP is the solution that will be used in this tutorial. We will use Yaler which is an open source relay infrastructure that gives access to connected devices with very little configuration.

Follow the tutorial and get the code at this link.



  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • PlanetArduino is powered by WordPress. Design by Jasone.it. Valid XHTML   •   Valid CSS
    41 queries. 0,916 seconds.