Posts | Comments

Planet Arduino

Archive for the ‘SmartWatch’ Category

We recently showed you Becky Stern’s recreation of the “computer book” carried by Penny in the Inspector Gadget cartoon, but Stern didn’t stop there. She also built a replica of Penny’s most iconic gadget: her watch. Penny was a trendsetter and rocked that decades before the Apple Watch hit the market. Stern’s replica looks just like the cartoon version and even has some of the same features.

The centerpiece of this project is an Arduino Nicla Voice board. The Arduino team designed that board specifically for speech recognition on the edge, which made it perfect for recognizing Penny’s signature “come in, Brain!” voice command. Stern used Edge Impulse to train an AI to recognize that phrase as a wake word. When the Nicla Voice board hears that, it changes the image on the smart watch screen to a new picture of Brain the dog.

The Nicla Vision board and an Adafruit 1.69″ color IPS TFT screen fit inside a 3D-printed enclosure modeled on Penny’s watch from the cartoon. That even has a clever 3D-printed watch band with links connected by lengths of fresh filament. Power comes from a small lithium battery that also fits inside the enclosure.

This watch and Stern’s computer book will both be part of an Inspector Gadget display put on by Digi-Key at Maker Faire Rome, so you can see it in person if you attend.

The post Building the OG smartwatch from Inspector Gadget appeared first on Arduino Blog.

It used to be that building your own watch was either a big project or it meant that you didn’t really care about how something looked on your wrist. But now with modern parts and construction techniques, a good-looking smart watch isn’t out of reach of the home shop. But if you don’t want to totally do it yourself, you can turn to a kit and that’s what [Stephen Cass] did. Writing in IEEE Spectrum, he took a kit called a Watchy and put it through its paces for you.

Watchy is an open source product that uses an ESP32, an E-ink display, and costs about $50. The display is 1.5 inches — good enough for a watch — and it has a real time clock, a vibration motor, an accelerometer, and four buttons. The whole thing runs on a 200 mAh lithium polymer battery. The charger is microUSB and you can also upload software to it using the usual Arduino tools.

However, [Stephen] found that none of the examples he tried would work at first. He found problems with the Mac software, but he also had problems under Windows. The answer? Switching to a Raspberry Pi seemed to work and once the watch was wiped clean, the Mac tools would work, too. It sounds like this isn’t a common problem, but he has to erase the watch with the Pi before each programming cycle.

Unlike a normal Arduino program, all the work in a typical Watchy program happens in setup() so the watch can mostly sleep and it updates the 200×200 typically just once a minute. As an example, [Stephan] wrote a watch face that uses an old Irish alphabet to tell time. He plans to add code to grab online data, too, and the phone has support for connecting wirelessly and parsing JSON to make tasks like that easier.

We always thought the EZ430-Chronos was a good-looking watch, but its screen is dated now. You can also pick up a lot of cheap import watches that can be hacked.

What could you do with a dual-core 240 MHz ESP32 that supports Arduino-style programming, with 16 MB of flash, 8 MB of PSRAM, and 520 k of RAM? Oh, let’s throw in a touchscreen, an accelerometer, Wifi, and Bluetooth. Besides that, it fits on your wrist and can show the time? That’s the proposition behind Lilygo T Watch 2020. If it sounds like a smartwatch, it is. At around $25 –and you can snag the hardware from a few different places — it is not only cheaper than the latest flagship smartwatch, but it is also infinitely more hackable.

OK, so the screen is only 1.54″, but then again, it is a watch. If Arduino isn’t your thing, you can use anything else that supports the ESP32 like Micropython or even Scratch. There are variants that have LoRA and GPS, at slightly higher prices. You can also find ones with heart rate monitors and other features.

If you would like a preview of the firmware, it is all there on GitHub and there is a smattering of documentation. There are even a few examples, although brush up on your Mandarin. The watch actually looks passable for a smartwatch, although the one blemish is that it is 20 mm thick.  That’s almost double the thickness of an Apple Watch 5 or a Samsung Active 2.

Still, if you want total hackability, that extra 10 mm is probably worth it. You can, of course, hack some watches that are not meant to be used this way. Besides, this watch is a bit more socially acceptable than one that would earn you hacker street cred.

Miniaturization has made smart watches possible, even for the DIY maker to tinker with. For those just getting to grips with basic digital electronics, it can be daunting, however. For those just starting out, [陳亮] put together a handy guide to building the core of an Arduino-based watch.

The writeup starts at the beginning, going over the basic hardware requirements for a smart watch. This involves considering size, packaging and power draw, as well as the user interface. The build settles on an Arduino Pro Micro, as it uses the ATmega32U4 which eliminates secondary USB-to-serial chips, helping cut down on power consumption. A square IPS LCD display is used to display an analog-style watch face, and time is kept by a DS3231 real-time clock. A pair of small vibration sensors are used to wake the watch when the user moves their wrist to check the time.

While it doesn’t cover the final assembly into a watch-like form factor, it’s a handy guide on what it takes to build a working watch for those who are still getting their feet wet with hardware. Once you’ve got that down, it’s time to contemplate how you’ll build the sleek exterior. Naturally, a good maker has that covered, too.

The concept of a smartwatch was thrown around for a long time before the technology truly came to fruition. Through the pursuit of miniaturisation, modern smartwatches are sleek, compact, and remarkably capable for their size. Companies such as Apple and Samsung throw serious money into research and development, but that doesn’t mean you can’t create something of your own. [Electronoobs] has done just that, with this Arduino-based smartwatch build.

The brain of the watch is that hacker staple, the venerable ATmega328, most well known for its use in the Arduino Uno and Nano platforms. An FTDI module is used for USB communication, making programming the board a snap. Bluetooth communication is handled by another pre-built module, and a smartphone app called Notiduino handles passing notifications over to the watch.

This is a build that doesn’t do anything crazy or difficult to understand, but simply combines useful parts in a very neat and tidy way. The watch is impressively thin and compact for a DIY build, and has a host of useful functions without going overboard.

We’ve seen other DIY builds in this space, too – such as this ESP8266-based smartwatch. Video after the break.

Although smartwatches were designed to be an easy-to-use alternative for your smartphone, interacting with their touchscreens still requires your opposite hand to be free. So what do you do when you’re carrying a bag of groceries or holding onto a bus handle?

This is the problem a Dartmouth-led team set out to solve with WristWhirl, a smartwatch prototype that uses the wrist wearing the device as a joystick to perform common touchscreen gestures with one-handed continuous input, while freeing up the other hand for other tasks.

WristWhirl was built using a two-inch TFT display and a plastic watch strap equipped with a dozen infrared proximity sensors and a piezo vibration sensor, which is connected to an Arduino Due board. Commands are then made by moving the hand as if it were operating a joystick, while a finger pinch turns the sensors on/off to indicate the start or end of a gesture.

For starters, the team implemented four sample applications with off-the-shelf games and Google Maps to illustrate potential use cases.

Four usage scenarios for WristWhirl were tested: 1) a gesture shortcuts app was created, which allowed users to access shortcuts by drawing gestures; 2) a music player app was created, which allowed users to scroll through songs through wrist-swipes and play a selected song by double tapping the thumb and index fingers; 3) a map app was implemented for which 2D maps could be panned and zoomed depending on where the watch was held in relation to one’s body; and 4) game input, which often requires continuous input was tested, for which Tetris was played using a combination of wrist swipes, wrist extension and wrist flexion.

You can read more about the project on its page here, as well as see a demonstration of it below!

 

screen-shot-2016-10-01-at-10-53-56-amDaniel Davis wanted to see if he could turn his "dumb" nokia phone and turn it into a smartwatch.

Read more on MAKE

The post Hacking a Nokia Phone into a New Smartwatch appeared first on Make: DIY Projects and Ideas for Makers.

pebbleHeroIf you already have a Raspberry Pi running a Node.js server, you're already on your way to controlling your home with a smartwatch.

Read more on MAKE

The post Hack Your Pebble Steel to Control Your Raspberry Pi appeared first on Make: DIY Projects and Ideas for Makers.

Mag
08

Atmel-based smartwatch wins Make challenge

arduino, atmel, SmartWatch, watch Commenti disabilitati su Atmel-based smartwatch wins Make challenge 

oswatch-2

This watch, by Jonathan Cook, recently won MAKE’s Arduino Challenge, as posted on Bits and Pieces from the Embedded Design World. [via]

The watch is the latest iteration of an ongoing BLE watch endeavor Cook has been exploring for the past nine months. In addition to time and date functionality, he’s building interfacing that any smartwatch wearer would want — email, Facebook notification, Twitter updates, etc., and hopes to have the community further the platform as well.

Atmel-based smartwatch wins Make challenge - [Link]

Giu
27

Astrosmash style video game as Sony SmartWatch firmware

arduino, arduino hacks, astrosmash, SmartWatch, Sony Commenti disabilitati su Astrosmash style video game as Sony SmartWatch firmware 

sony-smartwatch-native-video-game

Here’s a firmware hack that brings a video game to the Sony SmartWatch. It’s pretty impressive considering the limited screen real estate and the fact that it has to be shared with the touch input. But we find it equally impressive that a game of this quality followed so quickly on the heels of Sony announcing the ability to make your own firmware for the watch. The speedy development is thanks partly to the community driven effort to hack the Arduino IDE to load sketches on the watch.

The advent of this IDE hack means that taking your Arduino sketch writing abilities to this hardware now has a fairly low learning curve. And reading through [Asier Arranz's] game code will make it even easier. He calls his game Star Wars but it reminds us more of Astrosmash. There’s a little green semicircle which is your ground-based defense vehicle. You need to fire the laser to shoot falling items out of the star-strewn night sky while also collecting power-ups that fall to the ground. Game play video is below.

Just remember, if you come up with a cool firmware app for the SmartWatch we want to hear about it.


Filed under: Arduino Hacks


  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook