Posts | Comments

Planet Arduino

Archive for the ‘etextile’ Category

Ott
21

Experience sound multi-sensorially with Ocho Tonos

ADK, arduino, etextile, Featured, Interaction Design, mega, Mega ADK, sound Commenti disabilitati su Experience sound multi-sensorially with Ocho Tonos 

ochotonos

Some of you may have noticed that words like rhythm, texture, pattern, can be used both to describe fabrics, as well as sound. Focused on building an interface as a whole, using mostly textiles, OCHO TONOS invites the user to interact through touch, and experience sound in a multi-sensorial way. Ocho Tonos is an interactive installation by EJTech duo (Esteban de la Torre and Judit Eszter Kárpáti) I met last July during etextile summer camp while they were working on this experimental textile interface for tactile/sonic interaction by means of tangibles:

Exploring the relation between sound and textile and experimenting with the boundaries of our senses whilst changing the way we perceive fabric, surfaces and their manifestation as sound. Recontextualizing our tactile interaction with textile acting as an interface, where each element triggers, affects and modifies the generated sound’s properties. Creating a soundscape through sensor technology enticing audiophiles to interact and explore with reactive textile elements.The nexus of the body, the senses and technology.
OCHO TONOS is a symbiosis of the unique hand-crafted traditional textile techniques and the immaterial digital media.

Thanks to Arduino Mega ADK , all inputs coming from the touch of the user on the soft sensors are translated into a digital platform, parsed and filtered through MaxMSP, in order to control the generation of a soundscape in Ableton Live.

Ocho Tonos was chopped, spiced and cooked at Kitchen Budapest. Sounds used are samples from the working machinery at  TextielLab.

Ago
19

A couple of interactive pads made with Lilypad Arduino

arduino, etextile, Featured, Lilypad, pad, Wearables Commenti disabilitati su A couple of interactive pads made with Lilypad Arduino 

lilypadarduino

Agy Lee is an active member of the Singapore maker community and shared with us on the Arduino G+ Plus Community the interactive pad she prototyped using Lilypad Arduino:


She was inspired by the Sensor Demo Mat made by Kenneth Larsen some months before and that you can make yourself following this Instructables!

A pillow clock? How? Read on…

Updated 18/03/2013

Time for another instalment in my irregular series of irregular clock projects. In contrast with the minimalism of Clock Two, in this article we describe how to build a different type of clock – using the “lilypad” style of Arduino-compatible board and components designed for use in e-textiles and wearable electronics. As the LilyPad system is new territory for us, the results have been somewhat agricultural. But first we will examine how LilyPad can be implemented, and then move on to the clock itself.

The LilyPad system

By now you should have a grasp of what the whole Arduino system is all about. If not, don’t panic – see my series of tutorials available here. The LilyPad Arduino boards are small versions that are designed to be used with sewable electronics – in order to add circuitry to clothing, haberdashery items, plush toys, backpacks, etc. There are a few versions out there but for the purpose of our exercise we use the Protosnap Lilypad parts which come in one PCB unit for practice, and then can be ‘snapped out’ for individual use. Here is an example in the following video:

The main circular board in the Arduino-type board which contains an ATmega328 microcontroller, some I/O pins, a header for an FTDI-USB converter and a Li-Ion battery charger/connector. As an aside, this package is  good start – as well as the main board you receive the FTDI USB converter, five white LEDs, a buzzer, vibration module, RGB LED, a switch, temperature sensor and light sensor. If you don’t want to invest fully in the LilyPad system until you are confident, there is a smaller E-Sewing kit available with some LEDs, a battery, switch, needle and thread to get started with.

Moving forward – how will the parts be connected? Using thread – conductive thread. For example:

This looks and feels like normal thread, and is used as such. However it is conductive – so it doubles as wire. However the main caveat is the resistance – conductive thread has a much higher resistance than normal hook-up wire. For example, measuring a length of around eleven centimetres has a resistance of around 11Ω:

So don’t go too long with your wire runs otherwise Ohm’s Law will come into play and reduce the available voltage. It is wise to try and minimise the distance between parts otherwise the voltage potential drop may be too much or your digital signals may have issues. Before moving on to the main project it doesn’t hurt to practice sewing a few items together to get the hang of things. For example, run a single LED from a digital output – here I was testing an LED by holding it under the threads:

Be careful with loose live threads – it’s easy to short out a circuit when they unexpectedly touch. Finally for more information about sewing LilyPad circuits, you can watch some talent from Sparkfun in this short lesson video:

And now to the Clock!

It will be assumed that the reader has a working knowledge of Arduino programming and using the DS1307 real-time clock IC. The clock will display the time using four LEDs – one for each digit of the time. Each LED will blink out a value which would normally be represented by the digit of a digital clock (similar to blinky the clock). For example, to display 1456h the following will happen:

  • LED 1 blinks once
  • LED 2 blinks four times
  • LED 3 blinks five times
  • LED 4 blinks six times

If a value of zero is required (for example midnight, or 1000h) the relevant LED will be solidly on for a short duration. The time will be set when uploading the sketch to the LilyPad, as having two or more buttons adds complexity and increases the margin for error. The only other hardware required will be the DS1307 real-time clock IC. Thankfully there is a handy little breakout board available which works nicely. Due to the sensitivity of the I2C bus, the lines from SDA and SCL to the LilyPad will be soldered. Finally for power, we’re using a lithium-ion battery that plugs into the LilyPad. You could also use a separate 3~3.3 V DC power supply and feed this into the power pins of the FTDI header on the LilyPad.

Now to start the hardware assembly. First – the RTC board to the LilyPad. The wiring is as follows:

  • LilyPad + to RTC 5V
  • LilyPad – to RTC GND
  • LilyPad A4 to RTC SDA
  • LilyPad A5 to RTC SCL
Here is an our example with the RTC board soldered in:

At this stage it is a good idea to test the real-time clock. Using this sketch, you can display the time data on the serial monitor as such:

Sewing it together…

Once you have the RTC running the next step is to do some actual sewing. Real men know how to sew, so if you don’t – now is the time to learn. For our example I bought a small cushion cover from Ikea. It is quite dark and strong – which reduces the contrast between the conductive thread and the material, for example:

However some people like to see the wires – so the choice of slip is up to you. Next, plan where you want to place the components. The following will be my rough layout, however the LilyPad and the battery will be sewn inside the cover:

The LilyPad LEDs have the current-limiting resistor on the board, so you can connect them directly to digital outputs. And the anode side is noted by the ‘+’:

For our example we connect one LED each to digital pins six, nine, ten and eleven. These are also PWM pins so a variety of lighting effects are available. The cathode/negative side of the LED modules are connected together and then return to the ‘-’ pad on the LilyPad. The actual process of sewing can be quite fiddly – so take your time and check your work. Always make note to not allow wires (threads) to touch unless necessary. It can help to hold the LilyPad up and let the cloth fall around it to determine the location of the LilyPad on the other side, for example:

As this was a first attempt – a few different methods of sewing the parts to the cloth were demonstrated. This becomes evident when looking on the inside of the slip:

… however the end product looked fair enough:

After sewing in each LED, you could always upload the ‘blink’ sketch and adapt it to the LEDs – a simple way to test your sewing/wiring before moving forward.

The sketch…

As usual with my clock projects the sketch is based around the boilerplate “get time from DS1307″ functions. There is also the function blinkLED which is used to control the LEDs, and the time-to-blinking conversion is done in the function displayTime. For those interested, download and examine the sketch.

The results!

Finally in the video clip below our pillow clock is telling the time – currently 1144h:

So there you have it, the third of many clocks we plan to describe in the future. Once again, this project is just a demonstration – so feel free to modify the sketch or come up with your own ideas.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

The post Project: Clock Three – A pillow clock appeared first on tronixstuff.



  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook