Posts | Comments

Planet Arduino

Archive for the ‘oscilloscope’ Category

Oscillo-02

Starting a new project is always a fun yet effective way to hone your skills while exploring circuitry and programming. To help improve his engineering chops, Joop Brokking recently bought an inexpensive oscilloscope (a device for visualizing voltage over time in an x-y graph) and connected it to an Arduino Uno. He then shared his findings in a detailed tutorial on YouTube.

In the video below, Brokking is using a Hantek 6022BE 20MHz dual-channel oscilloscope and provides three examples to better understand what can go wrong when building a simple Arduino setup.

Oscillo-02

Starting a new project is always a fun yet effective way to hone your skills while exploring circuitry and programming. To help improve his engineering chops, Joop Brokking recently bought an inexpensive oscilloscope (a device for visualizing voltage over time in an x-y graph) and connected it to an Arduino Uno. He then shared his findings in a detailed tutorial on YouTube.

In the video below, Brokking is using a Hantek 6022BE 20MHz dual-channel oscilloscope and provides three examples to better understand what can go wrong when building a simple Arduino setup.

Mar
20

A simple DIY Oscilloscope with Arduino Uno and Mega

arduino, arduino uno, oscilloscope Commenti disabilitati su A simple DIY Oscilloscope with Arduino Uno and Mega 

2014-12-19+16.20.02

by vaupell:

I am experimenting with RF and IR signals in various frequencies and had some trouble with the receivers and needed to see what kind of signal i was receiving. I cannot afford a real oscilloscope but i knew about the older Arduino oscilloscopes.

After trying many different versions of code and tutorials, I was unable to get a single one to work, and all the tutorials and guides around was 2-3 years old. Not sure if it is the IDE or the actual hardware that has changed in such a way that it didn’t work anymore.

I finally found a working oscilloscope from a Japanese website, (linked below) and a working TFT screen library, meaning i could read the various signals received.

A simple DIY Oscilloscope with Arduino Uno and Mega - [Link]

Set
30

Dr.Duino – Arduino Debugging tool!

arduino, debug, kickstarter, oscilloscope, shield Commenti disabilitati su Dr.Duino – Arduino Debugging tool! 

d67050de7352b404f9d39bc90209496d_large

It’s Like a Shield for your Shields! Makes debugging your Arduino projects super fast! by Guido Bonelli Jr @ kickstarter.com:

Do you love Arduino development BUT dread testing your hardware because there is no easy way to attach things like your meter, oscilloscope or probes?

Well fear not, ArduinoNaut, Dr.Duino™ is here to the rescue!

Dr.Duino – Arduino Debugging tool! - [Link]

Giu
29

A PC and an Arduino: here’s your DIY Oscilloscope

ADC, arduino, MATLAB, oscilloscope Commenti disabilitati su A PC and an Arduino: here’s your DIY Oscilloscope 

Oscillo2-500x349

by prem_ranjan @ open-electronics.org:

We have designed an Oscilloscope using PC and Arduino Board. The signal is first of all fed to the Arduino Board where the analog signal is converted to a digital signal by the ADC which is then serially outputted to the PC and is read by the MATLAB software via the COM ports. Here the signal is read in the form of digital data but then is converted to analog one by using the resolution of the ADC used by the Arduino Board. The MATLAB software was then used to plot the signals.

A PC and an Arduino: here’s your DIY Oscilloscope - [Link]

Apr
26

Make an Oscilloscope using the SainSmart Mega2560

arduino, LCD, oscilloscope, SainSmart Mega2560, TFT Commenti disabilitati su Make an Oscilloscope using the SainSmart Mega2560 

FS80H0VHTVDY4H4.LARGE

This instructable will show you how to build a portable Touch Screen Oscilloscope for less than 40 U$! johnag @ instructables.com writes:

The oscilloscope is one of the most powerful electronic instruments that is available to electronics hobbyist, experimenters, and engineers. It is mainly used to measue time-varying signals. Any time you have a signal that varies with time( slowly, quickly, and /or periodically ) you can use an oscilloscope to measure it , visualize it, and to find any unexpected features in it.

Make an Oscilloscope using the SainSmart Mega2560 - [Link]

Lug
08

Arduino oscilloscope at five megasamples per second

arduino hacks, oscilloscope, tool hacks Commenti disabilitati su Arduino oscilloscope at five megasamples per second 

arduino-5-megasamples-oscilloscoper

There’s no substitute for a proper oscilloscope on your electronics bench. But unfortunately we still don’t have one of our own. But we’ve got an Arduino board and paired with another IC it can sample an astonishing 5 million cycles per second.

[Bob Davis] has been working on an Arduino based oscillscope for a while now. He keep squeezing more and more performance out of it. A previous version hit 3 megasamples using an AD775 chip. When he added a FIFO buffer chip he was able to squeeze 10-25 megasamples out of it… wow! Unfortunately the output tended to be glitchy.

This version gets rid of the AD775 in favor of a CA3306. Both are analog-to-digital converters but the new circuit is less complex and more reliable. It uses just three capacitors and an external clock to support the IC. Take a look at the video below to see how it performs. He’s outputting a graph of the samples on a small LCD screen. The best part is that since the extra chip is doing the sampling this can be ported to your microcontroller of choice.


Filed under: Arduino Hacks, tool hacks
Giu
20

Arduino LCD Oscilloscope

arduino, KS0108, LCD, oscilloscope, PIC18F2550, Test/Measurements Commenti disabilitati su Arduino LCD Oscilloscope 

IMG_4199

semifluid.com writes:

It has been 7 years (!) since I posted my PIC18F2550 KS0108 Graphical LCD Oscilloscope code and schematics. I have long since taken the circuit apart, sold my PIC microcontrollers, and moved on in my life (as one can surmise from my most recent posts detailing my graduate and postdoctoral work). However, I still get inquiries about the Microchip PIC oscilloscope, so I decided to recreate it using a simpler setup using my Arduino Fio.

[via]

Arduino LCD Oscilloscope - [Link]

Hello readers

Today we are going to examine the Texas Instruments TLC5940 16-channel LED driver IC. My reason for doing this is to demonstrate another, easier way of driving many LEDs as well as LED display modules that are common-anode. If you have a common-cathode display module, you should have a look at the Maxim MAX7219. Moving along, here is the IC:

Another nice big DIP IC. Also available in HTSSOP and QFN packaging. What can this IC do for us? It can control 16 LEDs per IC, and also be cascaded to control more and more, with the display data arriving via a serial line in the same manner as a 74HC595 shift register. Furthermore, another benefit of this IC is that you don’t need matching current-limiting resistors for your LEDs, as this IC is a current sink, in that the current flows from the 5V rail, through the LED, then into the IC. However, it can control the brightness of the LEDs using pulse-width modulation over 4096 steps via software, or using a single resistor.

What is pulse-width modulation? Normally an LED might be on, or off. But if you switch it on and off very quickly, it does not look as bright (as it is not on 100% of the time). If you alter the period of time between on and off, you can alter the perceived brightness of the LED. Here is an example, compare the brightness of the LED bars against the display of the CRO – as the brightness increases, the voltage (amplitude [vertical thickness]) spreads across the entire time period (horizontal axis); as the brightness decreases, the voltage spread across time retreats:

Using the IC is very easy on the hardware front. Here is the data sheet: TLC5940.pdf. The pinout diagram is quite self-explanatory:

Pins OUT0~OUT15 are the current-sink pins for each LED. When one is selected they allow current to flow into the IC from the 5V rail, with the LED in between – turning it on. However it is easier to understand with a practical example, such as this (click to enlarge):

Here we have our Arduino board or compatible sending serial data to the TLC5940 to control sixteen LEDs. The 2k ohm resistor is required to set the maximum current available to flow through the LEDs, thereby adjusting their brightness. Using software you can adjust the brightness with PWM for each LED by itself. Very important: this circuit will need external power into the Arduino or a separate 5V power supply. The circuitry on the breadboard draws up to ~318 mA by itself – running the Arduino from USB only made it somewhat flaky in operation. Here is the circuit in action with an ammeter between the breadboard and 5V out on the Arduino:

Anyhow, let’s get moving once more – here is the assembled demonstration circuit:

For our example, we will be using the Arduino way of doing things. Thankfully (once more) there is a library to make controlling the IC exponentially easier. The library page and download files are available from here; the documentation page is here.  If you need guidance on installing a library, please visit here. However the commands to control the IC are quite simple with the Arduino library.

First of all, include the TLC5940 library, as such:

#include “Tlc5940.h”

Then in void setup(); you create the object using the function:

Tlc.init();

You can insert a number between 0 and 4095 to set the starting PWM (LED brightness) value, however this is optional.

Setting an output for display requires two functions, first Tlc.set(l, p); where l is the output (0~15) and p is the PWM brightness level – then execute Tlc.update(); which sends the command to the IC to be executed. The sketch below is easy to follow and understand the process involved.

Moving forward with the demonstration, here is the sketch  – TLC5940demo.pdf, and the video clip of operation:

When the LEDs are glowing from dim to bright and return, we are altering the PWM value of the LEDs to adjust their brightness. This also occurs during the last operation where the LEDs are operating like the bonnet of KITT.

Well once again that’s enough blinkiness for now, again this is another useful IC that helps simplify things and be creative. As always, avoid the risk of counterfeit ICs  – so please avoid disappointment, support your local teams and buy from a reputable distributor. Living in Australia, mine came from Farnell (part number 1226306). So have fun!

Remember, if you have any questions at all please leave a comment (below). We also have a Google Group dedicated to the projects and related items on the website – please sign up, it’s free and we can all learn something. High resolution photos are available from flickr.

Otherwise, have fun, stay safe, be good to each other – and make something! :)

[Note – the TLC5940 was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

Hello everyone

Today we are going to continue exploring alternating current, with regards to how resistors and capacitors deal with AC. This chapter is part two, chapter one is here.

To help with the explanations, remember this diagram:

That is, note that there are three possible voltage values, Vpp, Vp and Vrms. Moving on. Alternating current flows through various components just like direct current. Let’s examine some components and see.

First, the resistor. It operates in the same way with AC as it does DC, and the usual calculations apply with regards to Ohm’s law, dividing voltage and so on. However you must keep in mind the type of voltage value. For example, 10Vrms + 20Vpp does NOT equal 30 of anything. But we can work it out. 20Vpp is 10Vp,  which is 7.07Vrms… plus 10Vrms = 17.07Vrms. Therefore, 10Vrms + 20Vpp = 17.07Vrms.

Furthermore, when using Ohm’s law, or calculating power, the result of your equation must always reflect the type of voltage used in the calculations. For example:


Next, the capacitor. Capacitors oppose the flow of alternating current in an interesting way – in simple terms, the greater the frequency of the current, the less opposition to the current. However, we call this opposition reactance, which is measured in ohms. Here is the formula to calculate reactance:


the result Xc is measured in Ohms, f is frequency is Hertz, and C is capacitance in Farads. Here are two examples – note to convert the value of the capacitor back to Farads


Also consider if you have identical frequencies, a smaller capacitor will offer a higher resistance than a larger capacitor. Why is this so? A smaller capacitor will reach the peak voltages quicker as it charges in less time (as it has less capacitance); wheras a larger capacitor will take longer to charge and reach the peak voltage, therefore slowing down the current flow which in turn offers a higher reactance.

Resistors and capacitors can also work together as an AC voltage divider. Consider the following schematic:

As opposed to a DC voltage divider, R2 has been replaced with C1, the 0.1 uF capacitor. In order to calculate Vout, we will need the reactance of C1 – and subsitute that value for R2:

However, once the voltage has been divided, Vout has been transformed slightly – it is now out of phase. This means that Vout oscillates at the same frequency, but at different time intervals than Vin. The easiest way to visualise this is with an oscilloscope, which you can view below:

Please note that my CRO is not in the best condition. In the clip it was set to a time base of 2 milliseconds/division horizontal and 5 volts/division vertical.

Thus ends chapter two of our introduction to alternating current. I hope you understood and can apply what we have discussed today. As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement, you can either leave a comment below or email me – john at tronixstuff dot com.

Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts. Or join our Google Group and post your questions there.

Otherwise, have fun, be good to each other – and make something! :)



  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook