Posts | Comments

Planet Arduino

Archive for the ‘e-ink’ Category

The world just recognized Earth Day and it was a good reminder that we all have a responsibility to protect the planet. Unfortunately, many of our devices suck up energy in direct opposition to that goal. But the market has proven that we aren’t willing to sacrifice convenience. Luckily, that isn’t always necessary. To demonstrate that, overVolt built this solar-powered weather station that features an E Ink display.

The first — and usually easiest — step in the right direction is reducing energy consumption. And it is often possible to make efficient devices that don’t require any sacrifices at all. In this case, overVolt achieved that with the use of an E Ink screen and a power-sipping Arduino Nano ESP32 board

E Ink technology is perfect for this application, because a weather station doesn’t need to update often. The display only consumes power during a refresh and the rest of the time it continues showing very readable content without any power. 

The next step was to eliminate any energy from fossil fuels. Because this weather station consumes so little power, it can run entirely on the power coming from a small solar panel. Sunlight isn’t always available, so overVolt added a lithium battery to store power through dark periods. 

The Arduino monitors temperature and humidity with a DHT11 sensor, as well as air quality with an MQ-135 sensor. And because this is a Nano ESP32, it can also connect to the internet to pull weather forecasts. 

While lithium batteries aren’t great from an environmental perspective, overVolt’s weather station proves that we can take positive steps without sacrificing convenience.

The post Celebrating Earth Day with a solar-powered E Ink weather station appeared first on Arduino Blog.

Keyboard shortcuts are great. Even so, a person can only be expected to remember so many shortcuts and hit them accurately while giving a presentation over Zoom. [Sebastian] needed a good set of of shortcuts for OBS and decided to make a macro keyboard to help out. By the time he was finished, [Sebastian] had macro’d all the things and built a beautiful and smart peripheral that anyone with a pulse would likely love to have gracing their desk.

The design started with OBS, but this slick little keyboard turned into a system-wide assistant. It assigns the eight keys dynamically based on the program that has focus, and even updates the icon to show changes like the microphone status.

This is done with a Python script on the PC that monitors the running programs and updates the macro keeb accordingly using a serial protocol that [Sebastian] wrote. Thanks to the flexibility of this design, [Sebastian] can even use it to control the office light over MQTT and make the CO2 monitor send a color-coded warning to the jog wheel when there’s trouble in the air.

This project is wide open with fabulous documentation, and [Sebastian] is eager to see what improvements and alternative enclosure materials people come up with. Be sure to check out the walk-through/build video after the break.

Inspired to make your own, but want to start smaller? There are plenty to admire around here.

What we carry today in our pockets is nominally called a “phone,” but more often than not we’re using it to do various other computing tasks. Justine Haupt, however, wanted an actual phone that “goes as far from having a touchscreen as [she could] imagine.”

What she came up with is a rotary cellphone that’s not just a show-and-tell piece, but is intended to be her primary mobile device. It’s reasonably portable, has a removable antenna for excellent reception, a 10-increment signal meter, and, perhaps most importantly, doesn’t make her go through a bunch of menus to actually use it as a phone. Other features include number storage for those she calls most often and a curved ePaper display that naturally doesn’t use any power when revealing a fixed message.

The project was prototyped using an Arduino Micro. It was then laid out of a PCB with an an Adafruit FONA 3G board and an ATmega2560V, programmed in the Arduino IDE.

Haupt has published a detailed look at the build process here.

What we carry today in our pockets is nominally called a “phone,” but more often than not we’re using it to do various other computing tasks. Justine Haupt, however, wanted an actual phone that “goes as far from having a touchscreen as [she could] imagine.”

What she came up with is a rotary cellphone that’s not just a show-and-tell piece, but is intended to be her primary mobile device. It’s reasonably portable, has a removable antenna for excellent reception, a 10-increment signal meter, and, perhaps most importantly, doesn’t make her go through a bunch of menus to actually use it as a phone. Other features include number storage for those she calls most often and a curved ePaper display that naturally doesn’t use any power when revealing a fixed message.

The project was prototyped using an Arduino Micro. It was then laid out of a PCB with an an Adafruit FONA 3G board and an ATmega2560V, programmed in the Arduino IDE.

Haupt has published a detailed look at the build process here.

For our Northern Hemisphere readers the chill winds of winter are fast approaching, so it seems appropriate to feature a weather station project. Enjoy your summer, Southern readers!

[Fandonov] has created a weather station project with an Arduino Uno at its heart and a Waveshare e-ink display as its face to the world, and as its write-up (PDF) describes, it provides an insight into both some of the quirks of these displays, and into weather forecasting algorithms.

The hardware follows a straightforward formula, aside from Arduino and display it boasts an Adafruit sensor board and a hardware clock. Software-wise though there are some tricks to give the display a scalable font that other tinkerers might find useful, drawing characters as a matrix of filled circle primitives.

The write-up gives an introduction to forecasting based only on local readings rather than on the huge volumes of data over a wide area used by professional meteorologists. In play here is the Zambretti algorithm, which takes the readings and information about whether they are rising or falling, and returns a forecast from a look-up table.

As we’ll all be aware, even professional weather forecasting is fraught with inaccuracies, but this is nonetheless an interesting project that is very much worth a second look. Meanwhile we’ve covered huge numbers of weather stations in the past, a couple of interesting ones are this one using a classic TI99/4A home computer, and more relevant here, this one using an e-paper badge.

Thanks [Phil] for the tip!


Filed under: Arduino Hacks
Dec
13

Open Informant, surveillance in the open

arduino, badge, diy, e-ink, Exhibition, surveillance, Wearables Comments Off on Open Informant, surveillance in the open 

Superflex

Back from Wearable Futures in London, I’d like to share a project seen at the Futures 10 exhibition during the last day of the event as it opens up some of the complexities of the issue around big data, surveillance and wearables.

Open Informant” by Superflux  attempts to confront the unsettling realties of surveillance in a networked age.  It’s composed by an app, a digital fabricated wearable container of an e-ink badge and it’s powered by Arduino Pro Mini. The Open Informant App scans your data looking for triggered words, containing a selection of those usually searched by state security services, and broadcasts fragments of  texts to the badge via bluetooth:

Using the body as an instrument for protest, the badge becomes a means of rendering our own voice visible in an otherwise faceless technological panopticon. By openly displaying what is currently taken by forceful stealth, we question the intrusive forms of mass surveillance adopted by democratic nations on its own citizenry, and in the process, shift the conversation around wearables from being about you and your body as machine, to the culture of machine intelligence and algorithmic monitoring.

 

Superflex illustration

The team working on it ( Jon Ardern, Yosuke Ushigome, Anab Jain) shared all aspects of the badge’s design and construction  on Github!

Open informant badge



  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook