Posts | Comments

Planet Arduino

Archive for the ‘3D printing’ Category

Arduino boards are great for controlling small servo motors, but what if you need something to provide linear travel? As spotted on Reddit, while the answer here is a little less straightforward, YouTuber Potent Printables has a great solution. It uses 3D-printed components, along with a dab of epoxy and fastener hardware to convert either a micro or standard continuous rotation servo into a rack-and-pinion mechanism.

The project can be seen in the video below with an Arduino Uno and motor shield, though any Arduino capable of PWM output should have no problem with this setup. Since the servos used here are meant for continuous rotation, travel distance is based only on timing. Depending on the application, you may want add a simple microswitch or other sensing mechanism for feedback.

This is a general purpose linear servo actuator (pusher style). Two sizes have been designed, for different space constraints and force outputs.

These use continuous rotation servos which helps keep the cost very low. Off the shelf actuators of this type can cost around $70 USD.

The “mini” version will fit in smaller spacers, but has a much lower force output. The “large” version has a higher force output, but is…larger in size than the “mini.”

3D printing, while revolutionary in many aspects, generally means you’re stuck with what you print. Researchers at the University of Colorado Boulder and the University of Tokyo, however, have created a printing system called Dynablock, which attaches specialized magnetic blocks together that can used over and over.

The system uses an array of 24×16 motors to push the blocks into position one layer at a time, giving a possible “print” resolution of 384 blocks per layer. An Arduino Uno, along with shift registers and motor drivers are used to directly control the block placement motors, and user interface is handled by a JavaScript-based application.

Dynamic 3D Printing combines the capabilities of 3D printers and shape displays: Like conventional 3D printing, it can generate arbitrary and graspable three-dimensional shapes, while allowing shapes to be rapidly formed and reformed as in a shape display. To demonstrate the idea, we describe the design and implementation of Dynablock, a working prototype of a dynamic 3D printer. Dynablock can form a three-dimensional shape in seconds by assembling 3,000 9 mm blocks, leveraging a 24 x 16 pin-based shape display as a parallel assembler. Dynamic 3D printing is a step toward achieving our long-term vision in which 3D printing becomes an interactive medium, rather than the means for fabrication that it is today. In this paper, we explore possibilities for this vision by illustrating application scenarios that are difficult to achieve with conventional 3D printing or shape display systems.

More info can be found in the project’s research paper here, or check it out in action in the video below:

If you need to know the forecast, generally you can look outside, listen to a weather report, or take advantage of the wide range of online services available. For something local to your dwelling place, however, this 3D-printed weather measurement device gives a great way to see what’s going on.

The system features a 3D-printed rain gauge, anemometer, and weather vane, along with a barometer and temperature sensor. Information from these sensors is piped to an Arduino Uno and displayed on a 4×20 character LCD.

While meant as a demonstration for an arts/science exhibition and would need to be calibrated for real world use, it is a perfect starting point if you’d like to build your own personal station!

The thrust bearings should be a tight fit and not require glue. The 5mm brass tube for the axles though will benefit from some cyanoacrylate on the ABS to hold them in place. Rough the tube up a bit with sandpaper or a file to help adhesion. The temperature and barometric pressure does not need calibrating. However rainfall (it is fairly close) and wind speed will need calibration. As long as the magnet in the wind direction sensor is close enough to trigger two adjacent reed switches when half way between the two reeds, it will allow 8 reed switches to reliably indicate 16 directions.

The reed switches in the direction indicator are vertical and are not trimmed, just the top end curled over to allow easy soldering to the common earth wire ring. Extra spacing maybe required, eg a small ring of heat shrink tubing to keep the moving parts of the anemometer and wind speed separated and seated on the bearings in the stationary base. This was too fine to print.

All the magnets N-S poles should be aligned along the line of the reed switch. The magnet lines of force between N-S have the best switching effect, not one of the poles, N or S, on its own. This also helps eliminate bounce, or multiple triggering.

More details on the project can be found on Thingiverse.

Performing an instrument well is hard enough, but flipping through sheet music while playing can slightly delay things in the best case, or can cause you to lose your concentration altogether. Music displayed on a computer is a similar story; however, Maxime Boudreau has a great solution using an Arduino Nano inside of a 3D-printed pedal assembly.

When set up with software found here, Boudreau’s DIY device allows you to control PDF sheet music on your laptop with the tap of a foot. While designed to work with a macOS app, there’s no reason something similar couldn’t be worked out under Windows or Linux as needed.

Check it out in action below!

While many enjoy roller coasters, few can claim the same dedication of engineer Matt Schmotzer, who 3D-printed a 1/25th scale replica of Invertigo, a boomerang coaster at Kings Island in Ohio.

As reported on 3D Printer Chat, the CAD model took only a week to complete, but 3D printing this 4’ x 8’ creation took an incredible 450 hours. This doesn’t include the countless hours spent assembling and debugging it.

The coaster runs on an Arduino Mega, using 42 of the 54 available IO pins. This allows it to not only lift and drop the coaster, but also feature details like actuated gates and restraints to keep the tiny imaginary passengers safe.

Be sure to check it out in the video below!

Building robots can be difficult, and if you want to construct something humanoid, designing the mechanics alone can be a significant task. ASPIR, which stands just over four feet tall, looks like a great place to start.

John Choi’s 3D-printed robot can move its arms, legs, and head via 33 servo motors, all controlled by an Arduino Mega, along with a servo shield.

The documentation found here is excellent; however, it comes with a warning that this is a very advanced project, taking several months to build along with $2,500 in parts. Even if you’re not willing to make that commitment, it’s worth checking out for inspiration, perhaps parts of the ASPIR could be adapted to your own design!

While electric wheelchairs are a vital tool for those with restricted mobility, they typically cost around $2,500, an amount that’s not the most affordable. To address this problem, a group of students from Aviv High School in Israel have come up with a low-cost, 3D-printed motor conversion kit that connects to a standard push-chair without any permanent modification or damage.

The system uses a pair of motors to steer like a tank, and features a joystick and Arduino Uno for control. Another interesting feature is shown later in the video below, when it’s folded up for storage with the motor kit still attached.

You can check out the team’s website for more details this incredible project, as well as All3DP’s recent article here.

If, for whatever reason, you need your computer to stay awake without changing its settings, that’s easy—just remember to shake your mouse back and forth intermittently! If remembering to do that over and over seems like too much work, then here’s a simple solution: a device setup to optically wiggle your mouse using an Arduino Nano and a micro RC servo.

The 3D-printed unit sits underneath a mouse and rotates a printed grid left and right in order to trick it into thinking that you’re moving the mouse, and thus keeping the computer awake.

Place your mouse on top of the Mouse Wiggler and make sure the optical sensor on top of the wheel. Power the device up use a USB power adapter and you’re good to go.

There’s no software to install, which makes it easy to enable and disable as needed! You can find more details on the build on its Instructables page.

If, for whatever reason, you need your computer to stay awake without changing its settings, that’s easy—just remember to shake your mouse back and forth intermittently! If remembering to do that over and over seems like too much work, then here’s a simple solution: a device setup to optically wiggle your mouse using an Arduino Nano and a micro RC servo.

The 3D-printed unit sits underneath a mouse and rotates a printed grid left and right in order to trick it into thinking that you’re moving the mouse, and thus keeping the computer awake.

Place your mouse on top of the Mouse Wiggler and make sure the optical sensor on top of the wheel. Power the device up use a USB power adapter and you’re good to go.

There’s no software to install, which makes it easy to enable and disable as needed! You can find more details on the build on its Instructables page.

What do you get if you have a 3D printer, some booze (or any beverage), a pump, and an Arduino? If you are [RobotGeek] you wind up with an elephant that will pour you a shot on demand. The project was inspired by the ShotBot, but we have to admit the elephant sells it.

Conceptually, the device is pretty simple. A pump and a light sensor do all the real work. When you cover the sensor with a shot glass, the pump dispenses liquid. What we found of interest, though, was the process of starting with an elephant model and then modifying it for the purpose at hand. In addition to making it larger, they also cut off the trunk and replaced it with a spout. The steps show Fusion 360, but you could apply the same concepts using your choice of CAD programs.

We are generally not fans of putting food in 3D printed objects. However, if you look the trunk/spout conceals some silicone tubing and that should be fine. Of course, you could imagine other animals, although there is something charming about the elephant. Perhaps, though, you’d prefer an anteater or perhaps a cow to dispense milk.

If you’d rather have a cocktail, maybe you need help shaking. Or, perhaps your friends are more into Jello shots.


Filed under: 3d Printer hacks, Arduino Hacks


  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook