Posts | Comments

Planet Arduino

Archive for the ‘Precision Farming’ Category

With the urgency to prevent environmental degradation, reduce waste and increase profitability, farmers around the globe are increasingly opting for more efficient crop management solutions supported by optimization and controlling technologies derived from the Industrial Internet of Things (IIoT). 

Intelligent information and communication technologies (IICT) (machine Learning (ML), AI, IoT, cloud-based analytics, actuators, and sensors) are being implemented to achieve higher control of spatial and temporal variabilities with the aid of satellite remote sensing. The use and application of this set of related technologies are known as “Smart Agriculture.”  

In SA, real-time and continuous monitoring of weather, crop growth, plant physical/chemical variables, and other critical environmental factors allow the optimization of yield production, reduction of labor, and improvement of farming products. Practices such as irrigation management, resource management, production, or fertilization operations are being facilitated by integrating IoT systems capable of providing information about multiple crop factors. In this way, while quality and quantity of production are boosted, the negative aspects of unsustainable and costly agriculture practices are also prevented with advanced interconnected actuators and sensors.

Arduino Smart Agriculture

Why Smart Agriculture?

The major focus in this relatively new field is crop optimization through higher productivity and significant control over environmental variations. Smart agriculture provides a convenient way to integrate farming management by having in-hand mobile devices that receive data collected from Unmanned Aerial Vehicles (UAV), satellites, or wireless sensors that operate directly at the plant level and are connected, for example, to cloud-based systems.

In general, SA can potentially:

  • Reduce water consumption,
  • Implement a better plant nursing process with optimized nutrient levels,
  • Decrease risk of yield loss,
  • Assurance of higher revenue,
  • Better yield quality,
  • Decrease overall production of waste,
  • Simplification of labor,
  • Enhance environmental protection.

From small farming to urban gardening

The IoT can provide solutions for small farmers ranging from resource management to climate adaptability. However, urban gardeners or small producers are also benefiting from innovations brought through the evolution of IoT. Figure 4 shows a typical low budget and high precision system designed to improve irrigation in urban gardens. 

The system is relatively simple, but it offers the potential easiness of building open-source solutions without significant technical constraints in different setups where adaptation to environmental conditions is required. Basic electromagnetic sensors, power supply, a water pump, relays, and the irrigation system are hardware interconnected and managed via cloud-based monitoring. A control unit receives the data that the user later accesses via the internet. 

Arduino small farming to urban gardening

Technology democratization can boost the competitiveness of small producers. 

Despite the tremendous potential of SA, technical issues are just one aspect of the whole story. The deployment of high-tech solutions that are less costly, accessible, reliable, and durable has not yet reached maximum potential. The limited internet coverage in rural areas, especially in emerging economies, slows down the deployment of SA technologies.  It is why the democratization of IICT, including the internet, is not a discussion of privilege. It is crucial to support the sustainable transformation of agriculture in which small farmers and rural communities can also benefit from technological development. 

To increase the adaptation of IIoT solutions, Arduino Pro has recently launched ARDUINO EDGE CONTROL (AEC). With its ease to adapt to solar-based power supply, AEC offers the power of AI with state-of-the-art connectivity modems. To learn more about how you can use the Edge Control, check out how to get started.

This is an edited version of an article originally published on Wevolver. For references used in this article, check the full piece at Wevolver.

This is an edited version of an article originally published on Wevolver. Please check the original article for references used within this post.

The post Sustainable transformation of agriculture with the Internet of Things appeared first on Arduino Blog.

With hopes of reinventing the way food is grown, Rory Aronson has developed humanity’s first open-source CNC farming machine. The FarmBot Genesis — which will begin taking pre-orders in July — is capable of planting seeds and then watering them precisely.

Designed with the Maker community in mind, FarmBot is driven by an Arduino Mega 2560, a RAMPS 1.4 shield, NEMA 17 stepper motors, and a Raspberry Pi 3. What’s more, all of its plastic components can easily be 3D printed, while its flat connecting plates can be made with either a waterjet, plasma or laser cutter, a CNC mill, or even a hacksaw and drill press.

The three-axis machine employs linear guides in the X, Y, and Z directions, which allows for tooling such as seed injectors, watering nozzles, sensors, and weed removal equipment to be accurately positioned. Impressively, FarmBot can cultivate a variety of crops in the same area simulatenously. 

FarmBot is controlled via mobile device or laptop, while its web-based interface makes customizing your garden as simple as playing FarmVille. You can also build and schedule sequences by dragging and dropping basic operations, adjust the parameters to your liking, and save. Meanwhile, a decision support system adjusts water, fertilizer and pesticide regimens, seed spacing, timing, and other factors based on soil and weather conditions, sensor readings, location, and time of year. And of course, FarmBot can be manually operated in real-time as well.

Aronson’s vision is to make precision agriculture open and accessible to everyone. Each FarmBot Genesis can be modified and augmented to suit anyone’s unique growing style and needs. For instance, you can power your machine with renewable energy from a small off-the-grid solar panel, or install a barrel to store and use rainwater.



  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook