Posts | Comments

Planet Arduino

Archive for the ‘xBee’ Category

Giu
08

A DIY magnetic levitation vehicle to inspire future engineers

arduino, diy, DIY Arduino, girls, maglev, magnetic levitation, MakerFaire, train, wireless, xBee Commenti disabilitati su A DIY magnetic levitation vehicle to inspire future engineers 

DIY maglev

Next to our Arduino booth at Makerfaire Bay Area we had a cool project created by Antipodes, a girls robotics team headquartered in Pacifica, California, USA. It’s a Do It Yourself (DIY) remote controlled (RC) model maglev with electromagnetic propulsion, or shortly called maglev.

A maglev is just like a conventional train but instead of wheels it has magnets and it levitates!

The team did a great job not only for the results achieved but especially in sharing the project’s documentation, detailed with all the steps for the construction through videos and pictures so that others can more easily follow in their footsteps.

DIY maglev

 

The maglev, which won the Maker Faire Editor’s Choice blue ribbon,  contains Arduino UNO, Arduino  Wireless Protoshield, plus many other components you can explore in their videos below and in the project page.

 

Over the last few years I’ve been writing a few Arduino tutorials, and during this time many people have mentioned that I should write a book. And now thanks to the team from No Starch Press this recommendation has morphed into my new book – “Arduino Workshop“:

shot11

Although there are seemingly endless Arduino tutorials and articles on the Internet, Arduino Workshop offers a nicely edited and curated path for the beginner to learn from and have fun. It’s a hands-on introduction to Arduino with 65 projects – from simple LED use right through to RFID, Internet connection, working with cellular communications, and much more.

Each project is explained in detail, explaining how the hardware an Arduino code works together. The reader doesn’t need any expensive tools or workspaces, and all the parts used are available from almost any electronics retailer. Furthermore all of the projects can be finished without soldering, so it’s safe for readers of all ages.

The editing team and myself have worked hard to make the book perfect for those without any electronics or Arduino experience at all, and it makes a great gift for someone to get them started. After working through the 65 projects the reader will have gained enough knowledge and confidence to create many things – and to continue researching on their own. Or if you’ve been enjoying the results of my thousands of hours of work here at tronixstuff, you can show your appreciation by ordering a copy for yourself or as a gift :)

You can review the table of contents, index and download a sample chapter from the Arduino Workshop website.

Arduino Workshop is available from No Starch Press in printed or ebook (PDF, Mobi, and ePub) formats. Ebooks are also included with the printed orders so you can get started immediately.

04/07/2013 – (my fellow) Australians – currently the easiest way of getting a print version is from Little Bird Electronics.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.


Over the last few years I’ve been writing a few Arduino tutorials, and during this time many people have mentioned that I should write a book. And now thanks to the team from No Starch Press this recommendation has morphed into my new book – “Arduino Workshop“:

shot11

Although there are seemingly endless Arduino tutorials and articles on the Internet, Arduino Workshop offers a nicely edited and curated path for the beginner to learn from and have fun. It’s a hands-on introduction to Arduino with 65 projects – from simple LED use right through to RFID, Internet connection, working with cellular communications, and much more.

Each project is explained in detail, explaining how the hardware an Arduino code works together. The reader doesn’t need any expensive tools or workspaces, and all the parts used are available from almost any electronics retailer. Furthermore all of the projects can be finished without soldering, so it’s safe for readers of all ages.

The editing team and myself have worked hard to make the book perfect for those without any electronics or Arduino experience at all, and it makes a great gift for someone to get them started. After working through the 65 projects the reader will have gained enough knowledge and confidence to create many things – and to continue researching on their own. Or if you’ve been enjoying the results of my thousands of hours of work here at tronixstuff, you can show your appreciation by ordering a copy for yourself or as a gift :)

You can review the table of contents, index and download a sample chapter from the Arduino Workshop website.

Arduino Workshop is available from No Starch Press in printed or ebook (PDF, Mobi, and ePub) formats. Ebooks are also included with the printed orders so you can get started immediately.

LEDborder

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

The post Book – “Arduino Workshop – A Hands-On Introduction with 65 Projects” appeared first on tronixstuff.

Gen
15

Some Thoughts on Integrating my Raspberry Pi

ardruino, esc, Raspberry Pi, servo, xBee Commenti disabilitati su Some Thoughts on Integrating my Raspberry Pi 





Got to get the Pi going soon


I once worked on an IDU for a helicopter so I'm thinking along those lines for the interface


The Pi can run the display which I have I want to find a way to piping video to the display in real time and overlaying all the symbols and controls depending on mode









Gen
13

Open Source Remote Control Very Cool

arduino, arduino nano, homebrew RC, RC, scratch build, xBee Commenti disabilitati su Open Source Remote Control Very Cool 







Dic
26

Chat with Xbee for Arduino

arduino, gallery, Peer to Peer, xBee Commenti disabilitati su Chat with Xbee for Arduino 

 

Thank you [priyansmurarka] to send us this project involving Xbee. This module is fully compatible with Arduino Boards and you can connect it with a proper shield, the [WirelessShield] . With that you can make comunicate Arduinos wireless, including sending messages about status or whatever you want. The submission of today is about building up a simple chat system.

It is a simple peer to peer chat system made using XBee radios which are compatible with Arduino .

On the [blog] of [priyansmurarka] you can find all the step to configure two modules and make them “talk”

Dic
25

Wireless Sensor Network for Temperature Sensing

arduino, gallery, sensors, temperature, wireless, xBee Commenti disabilitati su Wireless Sensor Network for Temperature Sensing 


This is an interesting implementation of Arduino and Wireless comunication. The user [priyansmurarka] posted:

Ok, so here is the basic problem statement. I need to develop a temperature sensing system such that the temperature from the sensor node is relayed to a co-ordinator sensor and then the co-ordinator node shows the user in a simple graphical form.

For the wireless communication, I used Xbee Series 2 modules with Arduino Board Shields.

Uses Melexis Temperature sensor and Arduino Board to monitor and plot ambient temperature.

The realization of this project is well documented on the [blog], with code, graphs and pictures.

Dic
23

XBee-controlled 4WD wireless robot

4WD, controllers, leds, motor, projects, remote, Robot, wireless, xBee Commenti disabilitati su XBee-controlled 4WD wireless robot 

In his blog, Michael describes a nice 4WD robot he realized by means of an arduino-compatible board, a motor shield and a couple of XBee radios, which have been used to implement a simple and effective remote control.

Actually, the remote is made up of a standard breadboard equipped with a joystick, a couple of buttons (that can turn the robot in a Kitt-like vehicle!) and the XBee radio. One interesting feature of this project is that the remote controller is fairly simple and has been designed to work with just the XBee radio board, instead of requiring an additional MCU.

More details can be found here.

[Via: Project Lab - Nootropic design]

Dic
11

Yellow Plane 2 with Inverted V Tail

arduino, Flying, FPV, gallery, gyro, plane, RC, remote control, Remote Control (Invention), stability, training, xBee Commenti disabilitati su Yellow Plane 2 with Inverted V Tail 

 

[nickatredbox] keeps up to date with the improvements of his project [yellow plane]. As you can find on this blog, the project is evolving week by week. Let’s see what’s today submission

1200 mm Wing space
280 mm cord
14% Clark Y
Target AUW 1300 Grams

Missing battery and camera box have a design which should weigh 140 grams empty.
The assembly shown below weighs 684 Grams no motor or electronics.
Electronics shown weigh 110 grams ESC Arduino board, Xbee, antenna and Gyro board
Motor & prop another 120 Gram

Here you have a [video]  and there you can follow the project on the [website]

New Code
Kalman Filter



This is the code in the main loop UpdateServos()


    unsigned long msDelta = LastMicros - micros();
    LastMicros = micros();
    
    //Measure time since last cycle
    double dt = (double)msDelta / 1000000.0;
    
      
    // The angle should be in degrees and the rate should be in degrees per second and the delta time in seconds    
    double X_Angle = (double)AnIn[0];
    double X_Rate = (double)AnIn[4];
    double Kalman_X = kalman[0].getAngle(X_Angle, X_Rate, dt);
    
    double Y_Angle = (double)AnIn[1];
    double Y_Rate = (double)AnIn[5];
    double Kalman_Y = kalman[1].getAngle(Y_Angle, Y_Rate, dt);
    
    double Z_Angle = (double)AnIn[2];
    double Z_Rate = (double)AnIn[6];
    double Kalman_Z = kalman[2].getAngle(Z_Angle, Z_Rate, dt);






/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved.

 This software may be distributed and modified under the terms of the GNU
 General Public License version 2 (GPL2) as published by the Free Software
 Foundation and appearing in the file GPL2.TXT included in the packaging of
 this file. Please note that GPL2 Section 2[b] requires that all works based
 on this software must also be made publicly available under the terms of
 the GPL2 ("Copyleft").

 Contact information
 -------------------

 Kristian Lauszus, TKJ Electronics
 Web      :  http://www.tkjelectronics.com
 e-mail   :  kristianl@tkjelectronics.com
 */

#ifndef _Kalman_h
#define _Kalman_h

class Kalman {
public:
    Kalman() {
        /* We will set the varibles like so, these can also be tuned by the user */
        Q_angle = 0.001;
        Q_bias = 0.003;
        R_measure = 0.03;
        
        bias = 0; // Reset bias
        P[0][0] = 0; // Since we assume tha the bias is 0 and we know the starting angle (use setAngle), the error covariance matrix is set like so - see: http://en.wikipedia.org/wiki/Kalman_filter#Example_application.2C_technical
        P[0][1] = 0;
        P[1][0] = 0;
        P[1][1] = 0;
    };
    // The angle should be in degrees and the rate should be in degrees per second and the delta time in seconds
    double getAngle(double newAngle, double newRate, double dt) {
        // KasBot V2  -  Kalman filter module - http://www.x-firm.com/?page_id=145
        // Modified by Kristian Lauszus
        // See my blog post for more information: http://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-and-how-to-implement-it
                        
        // Discrete Kalman filter time update equations - Time Update ("Predict")
        // Update xhat - Project the state ahead
        /* Step 1 */
        rate = newRate - bias;
        angle += dt * rate;
        
        // Update estimation error covariance - Project the error covariance ahead
        /* Step 2 */
        P[0][0] += dt * (dt*P[1][1] - P[0][1] - P[1][0] + Q_angle);
        P[0][1] -= dt * P[1][1];
        P[1][0] -= dt * P[1][1];
        P[1][1] += Q_bias * dt;
        
        // Discrete Kalman filter measurement update equations - Measurement Update ("Correct")
        // Calculate Kalman gain - Compute the Kalman gain
        /* Step 4 */
        S = P[0][0] + R_measure;
        /* Step 5 */
        K[0] = P[0][0] / S;
        K[1] = P[1][0] / S;
        
        // Calculate angle and bias - Update estimate with measurement zk (newAngle)
        /* Step 3 */
        y = newAngle - angle;
        /* Step 6 */
        angle += K[0] * y;
        bias += K[1] * y;
        
        // Calculate estimation error covariance - Update the error covariance
        /* Step 7 */
        P[0][0] -= K[0] * P[0][0];
        P[0][1] -= K[0] * P[0][1];
        P[1][0] -= K[1] * P[0][0];
        P[1][1] -= K[1] * P[0][1];
        
        return angle;
    };
    void setAngle(double newAngle) { angle = newAngle; }; // Used to set angle, this should be set as the starting angle
    double getRate() { return rate; }; // Return the unbiased rate
    
    /* These are used to tune the Kalman filter */
    void setQangle(double newQ_angle) { Q_angle = newQ_angle; };
    void setQbias(double newQ_bias) { Q_bias = newQ_bias; };
    void setRmeasure(double newR_measure) { R_measure = newR_measure; };
    
private:
    /* variables */
    double Q_angle; // Process noise variance for the accelerometer
    double Q_bias; // Process noise variance for the gyro bias
    double R_measure; // Measurement noise variance - this is actually the variance of the measurement noise
    
    double angle; // The angle calculated by the Kalman filter - part of the 2x1 state matrix
    double bias; // The gyro bias calculated by the Kalman filter - part of the 2x1 state matrix
    double rate; // Unbiased rate calculated from the rate and the calculated bias - you have to call getAngle to update the rate
    
    double P[2][2]; // Error covariance matrix - This is a 2x2 matrix
    double K[2]; // Kalman gain - This is a 2x1 matrix
    double y; // Angle difference - 1x1 matrix
    double S; // Estimate error - 1x1 matrix
};

#endif



New parts
Turnigy L3010C-1300kv (420w)

H-KING 50A Fixed Wing Brushless Speed Controller
ZIPPY Compact 2700mAh 3S 25C Lipo Pack
HobbyKing 929MG Metal Gear Servo 2.2kg/ 12.5g/ 0.10sec

Dimentions

1200 mm Wing span
280 mm cord
14% Clark Y
Length 950 mm




 AUW 1521 Grams Wing loading 14.83 oz/ft²  power to weight 270 Watts A Kg should perform much better than Yellow plane one.

Missing battery and camera box have a design which should weigh 140 grams empty.
The assembly shown below weighs 684 Grams no motor or electronics.
Electronics shown weigh 110 grams ESC Arduino board, Xbee, antenna and Gyro board
Motor and prop another 120 Gram




The code with the mixing and stability feedback, all looks Ok on the bench

void UpdateServos()
{

//Digital inputs TX code helper
//TxVal[8] |= (digitalRead(5) << 0);//joy 2 push
//TxVal[8] |= (digitalRead(6) << 1);//pb
//TxVal[8] |= (digitalRead(7) << 2);//slide
//TxVal[8] |= (digitalRead(8) << 3);//toggle

//Throttle TxVal[1]
//Rotary pot TxVal[2]
//Joy 1 X TxVal[3]
//Joy 1 Y TxVal[4]
//Joy 2 X TxVal[5]
//Joy 2 Y TxVal[6]
//rssi TxVal[7]
//digital TxVal[8]
//micros() TxVal[9]

//Use the pot as the gain for all channels for now
float GainPot = (float)(TxVal[2]) * 0.001f;

//Get the target values from the TX
int PitchTarg = (TxVal[3] / 10);
int RollTarg = (TxVal[4] / 10);
int YawTarg = (TxVal[6] / 10);


//Prime the Target WOZ values
if(PitchTargWOZ == 9999)
PitchTargWOZ = PitchTarg;

if(RollTargWOZ == 9999)
RollTargWOZ = RollTarg;

if(YawTargWOZ == 9999)
YawTargWOZ = YawTarg;


//Get the Centered target values
float PitchTargCentred = (float)(PitchTarg - PitchTargWOZ);
float RollTargCentred = (float)(RollTarg - RollTargWOZ);
float YawTargCentred = (float)(YawTarg - YawTargWOZ);

//Calculate gains
float PitchGain = GainPot * 1.0f;
float RollGain = GainPot * 1.0f;
float YawGain = GainPot * 1.0f;

//Get Gyro values
float PitchGyro = (float)(AnIn[2] - AnInWOZ[2]);
float RollGyro = (float)(AnIn[1] - AnInWOZ[1]);
float YawGyro = (float)(AnIn[0] - AnInWOZ[0]);

//Calc P error
float PitchError = (float)PitchTargCentred + PitchGyro;
float RollError = (float)RollTargCentred + RollGyro;
float YawError = (float)YawTargCentred + YawGyro;

//Apply gains
int PitchTrim = (int)(PitchError * PitchGain);
int RollTrim = (int)(RollError * RollGain);
int YawTrim = (int)(YawError * YawGain);

//Constaring trim authority
PitchTrim = constrain(PitchTrim, -30, 30);
RollTrim = constrain(RollTrim, -30, 30);
YawTrim = constrain(YawTrim, -30, 30);

//Dump the trim value
if((TxVal[9] & 0x4) == 0)
{
PitchTrim = 0;
RollTrim = 0;
YawTrim = 0;
}



//Calc flap anglke
int Flaps = 0;

//Apply flaps
if((TxVal[9] & 0x8) == 0)
Flaps = -25;



//Throttle
val = TxVal[1] / 10;
val = map(val, 1, 179, 30, 179);
val = constrain(val, 1, 165); // scale it to use it with the servo (value between 0 and 180)
servo[0].write(val); // sets the servo position according to the scaled value


//Vee tail

//Left Elevator Joy 1 Y TxVal[4]
val = (YawTarg + YawTrim) + (PitchTargCentred + PitchTrim);
val = constrain(val, 15, 165);
val = map(val, 0, 179, 135, 45); // scale it to use it with the servo (value between 0 and 180)
servo[1].write(val); // sets the servo position according to the scaled value


//Right Elevator Joy 1 Y TxVal[4]
val = (YawTarg + YawTrim) - (PitchTargCentred + PitchTrim);
val = constrain(val, 15, 165);
val = map(val, 0, 179, 135, 45); // scale it to use it with the servo (value between 0 and 180)
servo[2].write(val); // sets the servo position according to the scaled value



//Left Flaperon
val = 90 + (RollTargCentred + Flaps) + RollTrim;
val = constrain(val, 15, 165);
val = map(val, 0, 179, 165, 15); // scale it to use it with the servo (value between 0 and 180)
servo[3].write(val); // sets the servo position according to the scaled value

//Right Flaperon
val = 90 + (RollTargCentred - Flaps) + RollTrim;
val = constrain(val, 15, 165);
val = map(val, 0, 179, 165, 15); // scale it to use it with the servo (value between 0 and 180)
servo[4].write(val); // sets the servo position according to the scaled value


//Joy 2 x nose Wheel
val = (TxVal[6] / 10);
val = map(val, 0, 179, 55, 125);
servo[5].write(val); // sets the servo position according to the scaled value

}
















14% Clark Y more or les given the limitations of the Coroplast









  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook