Dic
12

# X-19 Hummingbird - Scratch Build

Dic
11

## Yellow Plane 2 with Inverted V Tail

#### arduino, Flying, FPV, gallery, gyro, plane, RC, remote control, Remote Control (Invention), stability, training, xBeeCommenti disabilitati su Yellow Plane 2 with Inverted V Tail

[nickatredbox] keeps up to date with the improvements of his project [yellow plane]. As you can find on this blog, the project is evolving week by week. Let’s see what’s today submission

1200 mm Wing space
280 mm cord
14% Clark Y
Target AUW 1300 Grams

Missing battery and camera box have a design which should weigh 140 grams empty.
The assembly shown below weighs 684 Grams no motor or electronics.
Electronics shown weigh 110 grams ESC Arduino board, Xbee, antenna and Gyro board
Motor & prop another 120 Gram

Here you have a [video]  and there you can follow the project on the [website]

Nov
29

## Arduino Aircraft Stabilization Code

#### gallery, plane, stabilization, update, yellow planeCommenti disabilitati su Arduino Aircraft Stabilization Code

We remember [nickatredbox] for the [Yellow Plane],  an Arduino project. Today we have an update to the code. Click on [more] for the full code update.

Revised Yellow FPV Plane with gyro stability system added, Worked best with analogue inputs from Murata piezo gyro sensors of a dead KK board filtered taking a 10 point average. Yaw compensation is currently not used as there is no rudder presently.

Here is a video of the functionality

Here is the Arduino code that calculates the trim values

//Use the pot as the gain for all channels for now
float GainPot = (float)(TxVal[2]) * 0.001f;

//Get the target values from the TX
int PitchTarg = (TxVal[3] / 10);
int RollTarg = (TxVal[4] / 10);
int YawTarg = (TxVal[6] / 10);

//Prime the Target WOZ values
if(PitchTargWOZ == 9999)
PitchTargWOZ = PitchTarg;

if(RollTargWOZ == 9999)
RollTargWOZ = RollTarg;

if(YawTargWOZ == 9999)
YawTargWOZ = YawTarg;

//Get the Centered target values
float PitchTargCentred = (float)(PitchTarg – PitchTargWOZ);
float RollTargCentred = (float)(RollTarg – RollTargWOZ);
float YawTargCentred = (float)(YawTarg – YawTargWOZ);

//Calculate gains
float PitchGain = GainPot * 1.0f;
float RollGain = GainPot * 1.0f;
float YawGain = GainPot * 1.0f;

//Get Gyro values
float PitchGyro = (float)(AnIn[2] – AnInWOZ[2]);
float RollGyro = (float)(AnIn[1] – AnInWOZ[1]);
float YawGyro = (float)(AnIn[0] – AnInWOZ[0]);

//Calc P error
float PitchError = (float)PitchTargCentred + PitchGyro;
float RollError = (float)RollTargCentred + RollGyro;
float YawError = (float)YawTargCentred + YawGyro;

//Apply gains
int PitchTrim = (int)(PitchError * PitchGain);
int RollTrim = (int)(RollError * RollGain);
int YawTrim = (int)(YawError * YawGain);

//Constaring trim authority
PitchTrim = constrain(PitchTrim, -30, 30);
RollTrim = constrain(RollTrim, -30, 30);
YawTrim = constrain(YawTrim, -30, 30);

//Dump the trim value
if((TxVal[9] & 0×4) == 0)
{
PitchTrim = 0;
RollTrim = 0;
YawTrim = 0;
}

Here is all the RX the code

#define MAX_CHAN 12
#define MAX_IN_STR 200
#define MAX_SETTINGS 20
#define MAX_NAV_VALS 50
#define MAX_SAMPLE 10

#include

char buf[255] = {0, };
String str = “”;
char *p;

Servo servo[7]; // create servo object to control a servo
int val = 0; // variable to read the value from the analog pin
int AnInWOZ[MAX_CHAN] = {0, };
int AnIn[MAX_CHAN] = {0, };
int AnInBuf[MAX_CHAN] = {0, };

//Get the target values from the TX at rest
int PitchTargWOZ = 9999;
int RollTargWOZ = 9999;
int YawTargWOZ = 9999;

String inputString = “”; // a string to hold incoming data

int Sample = 0;
int TxTemp[MAX_CHAN + 1] = {0, };
int TxVal[MAX_CHAN + 1] = {0, };

int NavVal[MAX_NAV_VALS] = {0, };
int SettingVal[MAX_SETTINGS] = {0, };

int DigBits = 0;
int ComState = 0;
long PacketCount = 0;
long NoPacketCount = 0;

//Digital inputs TX code helper
//TxVal[8] |= (digitalRead(5) << 0);//joy 2 push

void setup() {

// initialize serial:
Serial.begin(38400);

// reserve 200 bytes for the inputString:
inputString.reserve(MAX_IN_STR);

digitalWrite(2, HIGH);

servo[0].attach(3); // attaches the servo on pin 3 to the servo object
servo[1].attach(5); // attaches the servo on pin 5 to the servo object
servo[2].attach(6); // attaches the servo on pin 6 to the servo object
servo[3].attach(9); // attaches the servo on pin 9 to the servo object
servo[4].attach(10); // attaches the servo on pin 10 to the servo object
servo[5].attach(11); // attaches the servo on pin 11 to the servo object

NullServos();

//Get all the analogue signals
//Do a wind off zero

for(int i = 0;i < 8;i++)
AnInWOZ[i] = 0;

for(int i = 0;i < MAX_SAMPLE;i++){

delayMicroseconds(10);
}

for(int i = 0;i < 8;i++)
AnInWOZ[i] = (AnIn[i] / MAX_SAMPLE);

//Prime the WOZ values
PitchTargWOZ = 9999;
RollTargWOZ = 9999;
YawTargWOZ = 9999;

}

void loop(){

//*Get all the analogue signals
for(int i = 0;i < 8;i++)
AnInBuf[i] = 0;

for(int i = 0;i < MAX_SAMPLE;i++){

delayMicroseconds(10);
}

for(int i = 0;i < 8;i++)
AnIn[i]= (AnInBuf[i] / MAX_SAMPLE);

//Capture the Xbee comms
int CharCount = 0;

while ((Serial.available()) && ((++CharCount) 0)
inputString += inChar;

if(inputString.length() >= MAX_IN_STR)
break;

//Detect end of packet
if ( (inChar == ‘\n’) && (ComState > 0) )
{
//Serial.println(inputString);

//Count packets
PacketCount++;

int NumChan = ExtractPacket();

//Tramsmitter
if( ComState == 1)
{
for(int i = 0 ;i < NumChan;i++)
TxVal[i] = TxTemp[i];

DoTelemetery();

}//Navigator
else if( ComState == 2)
{
for(int i = 0 ;i < NumChan;i++)
NavVal[i] = TxTemp[i];

}//Settings
else if( ComState == 3)
{
for(int i = 0 ;i 50)
{
NullServos();
SoftReset();
}

//delayMicroseconds(1000);
}

int ExtractPacket()
{

int Lchk = 0;
int channel = 0; //initialise the channel count

p = &inputString[0];

while ((str = strtok_r(p, “,”, &p)) != NULL) // delimiter is the comma
{

TxTemp[channel] = str.toInt(); //use the channel as an index to add each value to the array

Lchk += TxTemp[channel];

channel++; //increment the channel

if(channel > MAX_CHAN)
break;
}

p = NULL;
inputString = “”;

//Process in comming data
if(channel > 2)
{
//Remove the remote chk from the total
Lchk -= TxTemp[channel-2];

//Checksum
if((Lchk – TxTemp[channel-2]) == 0)
return channel;

}

return -1;
}

void DoTelemetery()
{

//Send back a telemetery packet
if((PacketCount % 5) == 0)
{

int PacketType = 12;

//sprintf(buf, “T%02X,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,\n”, PacketType, rssiDur, PacketCount, NoPacketCount, TxVal[1], TxVal[2], TxVal[3], TxVal[4], TxVal[5], TxVal[6], AnIn[0], AnIn[1], AnIn[2], AnIn[3], AnIn[4], AnIn[5], AnIn[6], AnIn[7], DigBits);
//sprintf(buf, “T %d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,\n”, PacketType, rssiDur, PacketCount, NoPacketCount, AnIn[0], AnIn[1], AnIn[2], AnIn[3], AnIn[4], AnIn[5], AnIn[6], AnIn[7], DigBits, TxVal[9]);
sprintf(buf, “T%02X%02X%04X%02X%03X%03X%03X%03X%03X%03X%03X%03X%03X%02X%02X\n”, PacketType, rssiDur, PacketCount, NoPacketCount, AnIn[0], AnIn[1], AnIn[2], AnIn[3], AnIn[4], AnIn[5], AnIn[6], AnIn[7], DigBits, TxVal[9]);

Serial.write(buf);

digitalWrite(13, HIGH); // set the LED on
else
digitalWrite(13, LOW); // set the LED off

}
}

{

//Digital inputs TX code helper
//TxVal[8] |= (digitalRead(5) << 0);//joy 2 push

//Throttle TxVal[1]
//Rotary pot TxVal[2]
//Joy 1 X TxVal[3]
//Joy 1 Y TxVal[4]
//Joy 2 X TxVal[5]
//Joy 2 Y TxVal[6]
//digital TxVal[8]
//micros() TxVal[9]

//Use the pot as the gain for all channels for now
float GainPot = (float)(TxVal[2]) * 0.001f;

//Get the target values from the TX
int PitchTarg = (TxVal[3] / 10);
int RollTarg = (TxVal[4] / 10);
int YawTarg = (TxVal[6] / 10);

//Prime the Target WOZ values
if(PitchTargWOZ == 9999)
PitchTargWOZ = PitchTarg;

if(RollTargWOZ == 9999)
RollTargWOZ = RollTarg;

if(YawTargWOZ == 9999)
YawTargWOZ = YawTarg;

//Get the Centered target values
float PitchTargCentred = (float)(PitchTarg – PitchTargWOZ);
float RollTargCentred = (float)(RollTarg – RollTargWOZ);
float YawTargCentred = (float)(YawTarg – YawTargWOZ);

//Calculate gains
float PitchGain = GainPot * 1.0f;
float RollGain = GainPot * 1.0f;
float YawGain = GainPot * 1.0f;

//Get Gyro values
float PitchGyro = (float)(AnIn[2] – AnInWOZ[2]);
float RollGyro = (float)(AnIn[1] – AnInWOZ[1]);
float YawGyro = (float)(AnIn[0] – AnInWOZ[0]);

//Calc P error
float PitchError = (float)PitchTargCentred + PitchGyro;
float RollError = (float)RollTargCentred + RollGyro;
float YawError = (float)YawTargCentred + YawGyro;

//Apply gains
int PitchTrim = (int)(PitchError * PitchGain);
int RollTrim = (int)(RollError * RollGain);
int YawTrim = (int)(YawError * YawGain);

//Constaring trim authority
PitchTrim = constrain(PitchTrim, -30, 30);
RollTrim = constrain(RollTrim, -30, 30);
YawTrim = constrain(YawTrim, -30, 30);

//Dump the trim value
if((TxVal[9] & 0×4) == 0)
{
PitchTrim = 0;
RollTrim = 0;
YawTrim = 0;
}

//Calc flap anglke
int Flaps = 0;

//Apply flaps
if((TxVal[9] & 0×8) != 0)
Flaps = 25;

//Throttle
val = TxVal[1] / 10;
val = map(val, 1, 179, 30, 179);
val = constrain(val, 1, 165); // scale it to use it with the servo (value between 0 and 180)
servo[0].write(val); // sets the servo position according to the scaled value

//Elevator Joy 1 Y TxVal[4]
val = PitchTarg + PitchTrim;
val = constrain(val, 15, 165);
val = map(val, 0, 179, 135, 45); // scale it to use it with the servo (value between 0 and 180)
servo[1].write(val); // sets the servo position according to the scaled value

//Left Flaperon
val = RollTarg + Flaps + RollTrim;
val = constrain(val, 15, 165);
val = map(val, 0, 179, 165, 15); // scale it to use it with the servo (value between 0 and 180)
servo[2].write(val); // sets the servo position according to the scaled value

//Right Flaperon
val = RollTarg – Flaps + RollTrim;
val = constrain(val, 15, 165);
val = map(val, 0, 179, 165, 15); // scale it to use it with the servo (value between 0 and 180)
servo[3].write(val); // sets the servo position according to the scaled value

//Joy 2 x nose Wheel / rudder
val = (TxVal[6] / 10);
val = map(val, 0, 179, 55, 125);
servo[4].write(val); // sets the servo position according to the scaled value

//Joy 2 Y
val = TxVal[5] / 10;
val = constrain(val, 15, 165); // scale it to use it with the servo (value between 0 and 180)
servo[5].write(val); // sets the servo position according to the scaled value

}

void NullServos()
{

//Throttle TxVal[1]
//Rotary pot TxVal[2]
//Joy 1 X TxVal[3]
//Joy 1 Y TxVal[4]
//Joy 2 X TxVal[5]
//Joy 2 Y TxVal[6]
//digital TxVal[8]
//micros() TxVal[9]

//Throttle
val = 0;
val = map(val, 1, 179, 30, 179);
val = constrain(val, 1, 179); // scale it to use it with the servo (value between 0 and 180)
servo[0].write(val); // sets the servo position according to the scaled value

//Elevator Joy 1 Y TxVal[4]
val = 90;
val = constrain(val, 1, 179); // scale it to use it with the servo (value between 0 and 180)
servo[1].write(val); // sets the servo position according to the scaled value

//Left Flaperon
val = 90;
val = map(val, 0, 179, 1, 179); // scale it to use it with the servo (value between 0 and 180)
servo[2].write(val); // sets the servo position according to the scaled value

//Right Flaperon
val = 90;
val = constrain(val, 1, 179); // scale it to use it with the servo (value between 0 and 180)
servo[3].write(val); // sets the servo position according to the scaled value

//Joy 2 X
val = 90;
val = constrain(val, 1, 179); // scale it to use it with the servo (value between 0 and 180)
servo[4].write(val); // sets the servo position according to the scaled value

//Joy 2 Y
val = 90;
val = constrain(val, 1, 179); // scale it to use it with the servo (value between 0 and 180)
servo[5].write(val); // sets the servo position according to the scaled value

}

void SoftReset() // Restarts program from beginning but does not reset the peripherals and registers
{

//Prime the WOZ values
PitchTargWOZ = 9999;
RollTargWOZ = 9999;
YawTargWOZ = 9999;

NoPacketCount = 0;

asm volatile (” jmp 0″);
}

Planet Arduino is, or at the moment is wishing to become, an aggregation of public weblogs from around the world written by people who develop, play, think on Arduino platform and his son. The opinions expressed in those weblogs and hence this aggregation are those of the original authors. Entries on this page are owned by their authors. We do not edit, endorse or vouch for the contents of individual posts. For more information about Arduino please visit www.arduino.cc

• You are currently browsing the archives for the plane category.