Posts | Comments

Planet Arduino

Archive for the ‘cyberdeck’ Category

The cyberdeck community has exploded in recent years, because makers like to use their creativity to create custom machines tailored to their tastes and requirements. But the community has overlooked one very significant target market: toddlers. Young kids love fiddling with buttons and switches, and there is a plethora of evidence that suggests that interactive toys are good for development. With that in mind, a hacker dad named Josh built his son this cyberdeck for little ones.

Unlike most cyberdecks, this doesn’t actually have to do any real computing. Josh’s son won’t be performing any pentesting with Kali Linux. Instead, it just needs to be fun and engaging for a two-year-old. That means lots of switches, buttons, dials, and LEDs. The top does have a single-board computer and screen from a promotional video player, but it is self-contained and just loops videos. All of the real magic happens in the bottom half.

Josh created this cyberdeck using a waterproof hard case. The bottom half has a panel covered in buttons and switches. Each of those also has a corresponding LED. An Arduino Mega 2560 board monitors the states of the inputs, then sets the LEDs accordingly. Right now, that is just a one-to-one direct relationship, so flipping a particular switch turns a specific LED on or off. But Josh envisions more complicated relationships, like logic puzzles, that he can incorporate as his son gets older. Implementing those would be as simple as uploading new sketches to the Arduino.

The post Toddler receives a custom cyberdeck appeared first on Arduino Blog.

[Bytewelder] fondly remembers the Palm III and Sharp HC-4500, so taking on the design of Decktility, a custom handheld cyberdeck , was a natural next step. The blog post goes into much detail about the design decisions and challenges throughout the project. The end result, though, looks great.

The device uses a Raspberry Pi CM4 and an IPS touchscreen. The bulk of the design work was to get the power system working. There is a custom FET board and an Arduino that manages charging and battery state.

The 3D-printed case is compact, and the whole thing weighs about 375 grams. You can replace the batteries after their 6-hour stint or charge them in situ via USB-C.

The battery charger is of particular interest. [Bytewelder] wanted to integrate power management but didn’t want to write custom Linux drivers. The solution was simple: have the Arduino emulate an existing power management device with Linux driver support. In this case, the power management system looks to the Raspberry Pi like an LTC294x device, so the normal Linux OS knows how to handle it.

If you are really worried about batteries, you can swap processing power for battery life. This build reminds us of some of the organizers that were popular once upon a time. We have a soft spot for decks that look like retro computers or even if they could have been.

Combining cosplay and actual science, as well as a backstory that entails the two, this R.A.T.I.S. (Remote Assault and Tactical Intelligence System) cyberdeck by Paul Hoets is a true retrofuturistic work of art.

The build supposedly has its roots in the 1970s South African nuclear program, where it was used for radiation measurement and encrypted satellite data transfer. Given the luggable cyberdeck’s superb quality, one could almost believe it was military equipment.

Looking inside the rugged case reveals a Raspberry Pi 3 that provides computing power along with an Arduino Leonardo for a custom joystick input, indicating civilian origins. While there’s no satellite uplink (at least not without WiFi), it does feature a functional Geiger counter, which allows one to monitor local conditions for dangerous radiation levels.

Oh, sure, there have been a few cube-shaped PCs over the years, like the G4 and the NeXT cube. But can they really be called cubes when the display and the inputs were all external? We think not.

[ikeji] doesn’t think so either, and has created a cube PC that puts them all to shame. Every input and output is within the cube, including our favorite part — the 48-key ortholinear keyboard, which covers two sides of the cube and must be typed on vertically. (If you’ve ever had wrist pain from typing, you’ll understand why anyone would want to do that.) You can see a gif of [ikeji] typing on it after the break.

Inside the 3D printed cube is a Raspberry Pi 4 and a 5″ LCD. There’s also an Arduino Pro Micro for the keyboard matrix, which is really two 4×6 matrices — one for each half. There’s a 6cm fan to keep things cool, and one panel is devoted to a grille for heat output. Another panel is devoted to vertically mounting the microcontrollers and extending the USB ports.

Don’t type on me or my son ever again.

When we first looked at this project, we thought the tiny cube was a companion macro pad that could be stored inside the main cube. It’s really a test cube for trying everything out, which we think is a great idea and does not preclude its use as a macro pad one of these days. [ikeji] already has plenty of plans for the future, like cassette support, an internal printer, and a battery, among other things. We can’t wait to see the next iteration.

We love a good cyberdeck around here, and it’s interesting to see all the things people are using them for. Here’s a cyberduck that quacks in Python and CircuitPython.



  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook