Posts | Comments

Planet Arduino

We have had no shortage of clock projects over the years, and this one is entertaining because it spells the time out using Tetris-style blocks. The project looks good and is adaptable to different displays. The code is on GitHub and it relies on a Tetris library that has been updated to handle different displays and even ASCII text.

[Brian] wanted to use an ESP8266 development board for the clock, but the library has a bug that prevents it from working, so he used an ESP32 board instead. The board, a TinyPICO, has a breakout board that works well with the display.

There are also some 3D printed widgets for legs. If we’re honest, we’d say the project looks cool but the technology isn’t revolutionary. What we did find interesting though is that this is a good example of how open source builds on itself.

Of course, the library does a lot of the work, but according to [Brian] the it has several authors. [Tobias Bloom] started the code, and others have changed the library to draw ASCII characters and to support any display that uses the AdaFruit GFX-style library.

So while the code is simple, the result is impressive and is a result of [Brian] leveraging a lot of code from others — a great example of Open Source in action.

We looked at Brian’s use of this library for a YouTube subscription counter, but a clock has more universal appeal, we think — not everyone has a lot of YouTube subscribers. If you don’t have a life, you might try to recreate Tetris using the game of life.

In the Earth’s atmosphere, a drone can adjust its heading by varying the speed of the propellers, and thus the thrust output of each. If you wanted to land something on a lunar surface, or maneuver a spaceship, the lack of atmosphere means a different technique must be used.

While not going to space (yet), Tom Stanton decided to create a demonstrator for this technique, similar to how the manned Lunar Landing Research Vehicle (LLRV) operated in the 1960s and ’70s. Stanton’s device employs a central electric ducted fan (EDF) to hold the craft up, while three compressed air nozzles provide most of its directional control. 

In action, an RC flight controller’s signals are modified by an Arduino Nano to accommodate this unique control scheme, pulsing out bursts of air via three solenoid valves.

Check out the build and experimental process in the video below, culminating with untethered tests starting at around 17:30.

If you’re a fan of novel timepieces, then you’ll want to check out Christine Thompson’s VFD Alarm Clock.

The device features a USSR-manufactured IV-27V 7-segment tube, capable of displaying 13 numbers or letters via a 24V supply, though the MAX6921 chip used here means that only 10 grids are used.

10 characters, however, are plenty to show time, date, humidity, temperature, and pressure, plus the text “WAKE UP!” when an audible alarm sounds.

The clock runs on an Arduino Mega, along with an RTC module, a keypad, and secondary LCD screen on the back to assist with setting it up.

While most 3D printers deposit melted plastic in carefully controlled positions to build up a physical model, a similar process called “bioprinting” can be accomplished with biological materials. Commercial bioprinters can cost tens of thousands of dollars or more, but as shown here you can make your own using the shell an inexpensive desktop machine. 

In this example, a Monoprice MP Select Mini V2 is stripped down to its bones and motors, subbing in an Arduino Mega and RAMPS 1.4 stepper driver board.

A syringe-like extruder is added to push out custom bioink, and the Z-axis switch mounting and Marlin firmware is modified to accommodate the new device. The homing sequence is modeled in the video below, giving a short snippet of how it works.

Embedded programming using the Arduino IDE has become an important part of STEM education, and while more accessible than ever before, getting started still requires some coding and basic electronics skills. To explore a different paradigm for starting out on this journey, researchers have developed Flowboard to facilitate visual flow-based programming.

This device consists of an iPad Pro and a set of breadboards on either side. Users can arrange electrical components on these breadboards, changing the flow-based program on the screen as needed to perform the desired actions. Custom ‘switchboard’ hardware, along with an Arduino Uno running a modified version of Firmata, communicate with the iPad editor via Bluetooth.

With maker-friendly environments like the Arduino IDE, embedded programming has become an important part of STEM education. But learning embedded programming is still hard, requiring both coding and basic electronics skills. To understand if a different programming paradigm can help, we developed Flowboard, which uses Flow-Based Programming (FBP) rather than the usual imperative programming paradigm. Instead of command sequences, learners assemble processing nodes into a graph through which signals and data flow. Flowboard consists of a visual flow-based editor on an iPad, a hardware frame integrating the iPad, an Arduino board and two breadboards next to the iPad, letting learners connect their visual graphs seamlessly to the input and output electronics. Graph edits take effect immediately, making Flowboard a live coding environment.

Want to learn more? Check out the team’s research paper here

While the hoverboard craze has faded somewhat, the good news is that this means their powerful wheel motors can easily be found on online auction sites. Felix von Drigalski took advantage of this component’s availability, and created his own “HoverBot” which acts as something in between a radio-controlled skateboarder and a rather large self-balancing bot.

The device is built around an Arduino Mega, which takes input from an RC receiver, along with a Bosch BNO055 IMU, and passes appropriate signals to the motors through an ODrive controller. 

The HoverBot is a bit unsteady at high speeds, requiring close operator supervision. However, it looks like a lot of fun, especially when attempting tricks—sometimes successfully—at a skate park in the video below.

Microcontroller demo boards such as the Arduino UNO are ubiquitous on Hackaday as the brains of many a project which inevitably does something impressive or unusual. Sometime someone builds a particularly tiny demo board, or an impressively large one. In the case of the board featured here, the Arduino is a gorgeous labor of love which can’t really be called a board since there is no PCB. Instead of the traditional fiberglass, [Jiří Praus] formed brass bars into the circuitry and held it together with solder.

This kind of dedication to a project leaves an impression. His notes show he saw the barest way to operate an ATMega328, built it, tested, and moved on to the power supply to make it self-sustaining, then onto the communication circuit, and finally the lights. The video below shows a fully-functional Arduino happily running the blink program. He plans to encase the brass portion in resin to toughen it up and presumably keep every bump from causing a short circuit. The components are in the same position due to a custom jig which means a standard shield will fit right into place.

The Arduino started far less flashy yet nearly as fragile, and it has grown. And shrunk.

If your kids aren’t thrilled about doing chores, you could resort to a whiteboard, or simply create your own RFID tracking system like maker “alastair-a.” 

His project uses an Arduino Nano, along with an RFID reader and RTC module to track when a job has been completed. The chore is selected using a rotary encoder and displayed on a 16×2 LCD screen. When it’s done, the child who completed it can then scan in with their RFID fob to claim it as his or her own.

While there was initially some cash payment in mind for each task that’s accomplished, the novelty factor of using the system is reportedly so interesting that alastair’s children have entirely forgotten about it. Whether it works this well or not in all cases is an open question, but Arduino code and build info is available here if you’d like to make your own!

The ArduBoy, as you might have guessed from the name, was designed as a love letter to the Nintendo Game Boy that many a hacker spent their formative years squinting at. While the open source handheld is far smaller than the classic DMG-01, it retains the same general form factor, monochromatic display, and even the iconic red LED to the left of the screen. But one thing it didn’t inherit from the original was the concept of removable game cartridges. That is, until now.

Over the last year, [Mr.Blinky] and a group of dedicated ArduBoy owners have been working on adding a removable cartridge to the diminutive handheld. On paper it seemed easy enough, just hang an external SPI flash chip off of the test pads that were already present on the ArduBoy PCB, but to turn that idea into a practical cartridge required an immense amount of work and discussion. The thread on the ArduBoy community forums covers everything from the ergonomics of the physical cartridge design to the development of a new bootloader that could handle loading multiple games.

Early cartridge prototypes.

The first problem the group had to address was how small the ArduBoy is: there’s simply no room in the back to add in a cartridge slot. So a large amount of time is spent proposing different ways of actually getting the theoretical cartridge attached to the system. There was some talk of entirely redesigning the case so it could take the cartridge internally (like the real Game Boy), but this eventually lost out for a less invasive approach that simply replaced the rear of the ArduBoy with a 3D printed plate that gave the modders enough room to add a male header along the top edge of the system.

As an added bonus, the cartridge connector doubles as an expansion port for the ArduBoy. While perfecting the design, various forum users have chimed in with different gadgets that make use of the new port, from WS2812B LEDs to additional input devices like joysticks or a full QWERTY keyboard. Even if you aren’t interested in expanding the storage space on your ArduBoy, being able to plug in new hardware modules certainly opens up some interesting possibilities.

In fact, the project so impressed ArduBoy creator [Kevin Bates] that he chimed in on the topic last month to announce he would start looking into integrating the community’s cartridge modification into the production hardware. If all goes well, pretty soon there might be an official upgrade path for those who want to expand what this tiny nostalgia machine is capable of.

[Thanks to Roo for the tip.]

The ArduBoy, as you might have guessed from the name, was designed as a love letter to the Nintendo Game Boy that many a hacker spent their formative years squinting at. While the open source handheld is far smaller than the classic DMG-01, it retains the same general form factor, monochromatic display, and even the iconic red LED to the left of the screen. But one thing it didn’t inherit from the original was the concept of removable game cartridges. That is, until now.

Over the last year, [Mr.Blinky] and a group of dedicated ArduBoy owners have been working on adding a removable cartridge to the diminutive handheld. On paper it seemed easy enough, just hang an external SPI flash chip off of the test pads that were already present on the ArduBoy PCB, but to turn that idea into a practical cartridge required an immense amount of work and discussion. The thread on the ArduBoy community forums covers everything from the ergonomics of the physical cartridge design to the development of a new bootloader that could handle loading multiple games.

Early cartridge prototypes.

The first problem the group had to address was how small the ArduBoy is: there’s simply no room in the back to add in a cartridge slot. So a large amount of time is spent proposing different ways of actually getting the theoretical cartridge attached to the system. There was some talk of entirely redesigning the case so it could take the cartridge internally (like the real Game Boy), but this eventually lost out for a less invasive approach that simply replaced the rear of the ArduBoy with a 3D printed plate that gave the modders enough room to add a male header along the top edge of the system.

As an added bonus, the cartridge connector doubles as an expansion port for the ArduBoy. While perfecting the design, various forum users have chimed in with different gadgets that make use of the new port, from WS2812B LEDs to additional input devices like joysticks or a full QWERTY keyboard. Even if you aren’t interested in expanding the storage space on your ArduBoy, being able to plug in new hardware modules certainly opens up some interesting possibilities.

In fact, the project so impressed ArduBoy creator [Kevin Bates] that he chimed in on the topic last month to announce he would start looking into integrating the community’s cartridge modification into the production hardware. If all goes well, pretty soon there might be an official upgrade path for those who want to expand what this tiny nostalgia machine is capable of.

[Thanks to Roo for the tip.]



  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook