Posts | Comments

Planet Arduino

Whether you choose to control this vehicle with your mind or a joystick, the camera mounted on it will give you a new view of the world.

Maker “Imetomi” was inspired to create a tracked robot after he was able to salvage a camera off of a cheap drone. This became the basis of his FPV setup, which he fitted onto a little tracked vehicle. Although this would have been enough for most people, in addition to building a joystick-based controller, he also made it work with a brainwave headset.

Imetomi now has something that he can drive around virtually, spying on passersby, as long as it stays within the VR transmitter’s 50-meter range. Be sure to check out the video below, where the small bot shows of its impressive all-terrain capabilities, and read his Instructables write-up here.

 

[Chris Grill] got his hands on a pet boa constrictor, which requires a fairly strict temperature controlled environment. Its enclosure needs to have a consistent temperature throughout, or the snake could have trouble regulating its body temperature. [Chris] wanted to keep tabs on the temp and grabbed a few TTF-103 thermistors and an Arduino Yun, which allowed him to log the temperature on each side of the enclosure. He used some code to get the temp reading to the linux side of an Arduino Yun, and then used jpgraph, a PHP graphing library, to display the results.

snakemainBut that wasn’t good enough. Why not get a little fancy and have Amazon’s Echo read the temps back when you ask! Getting it setup was not so bad thanks to Amazon’s well documented steps to get custom commands set up.

He eventually lost the battle to get the Echo to talk to the web server on the Yun due to SSL issues, but he found an existing workaround by using a proxy.


Filed under: Arduino Hacks

The renaissance of Nixie tube popularity amid the nostalgia surrounding older tech has made them almost prohibitively expensive for individual projects. Seeing an opportunity to modernize the beloved devices, [Connor Nishijima] has unleashed this new, LED edge-lit display that he has dubbed Lixie.

We featured his prototype a few years ago. That design used dots to make up each character but this upgrade smooths that out with sleek lines and a look one would almost expect from a professional device — or at the very least something you’d see in a cyberpunk near-future. The color-changing Neopixel LEDs — moderated by a cleverly designed filter — allow for customization to your heart’s content, and the laser-cut acrylic panes allow for larger displays to be produced with relative ease.

The image above (and the video below) show two revisions of the most recent Lixie prototypes. There is a huge improvement on the right, as the digits are now outlines instead of single strokes and engraved instead of cut completely through the acrylic. The difference if phenomenal, and in our opinion move the “back to the drawing board” effect to “ready for primetime”. [Connor] and his team are working on just that, with a Tindie preorder in place for the first production-ready digits to roll off their line.

Considering that Nixie Tubes were originally considered too expensive for mass-produced items like clocks, it’s ironic they’re seeing a revival in hobbyist projects for just that purpose. Lixie, then, may fit the purpose for those seeing a cheaper solution without sacrificing on the quality of the result. The design is fully open-source, so get to hacking!

For a suitably cyberpunk application of a Nixie tube, check out this motorcycle speedometer. Oh, and lest you think we’re duplicating ourselves, there was another edge-lit Nixie-alike project featured here just a few weeks ago. Seems good ideas come in waves.


Filed under: Arduino Hacks, led hacks

Just before the dawn of the PC era, IBM typewriters reached their technical zenith with the Wheelwriter line. A daisy-wheel printer with interchangeable print heads, memory features, and the beginnings of word processing capabilities, the Wheelwriters never got much time to shine before they were eclipsed by PCs. Wheelwriters are available dirt cheap now, and like many IBM products are very hackable, as shown by this simple Arduino interface to make a Wheelwriter into a printer.

[Chris Gregg] likes playing with typewriters – he even got an old Smith Corona to play [Leroy Anderson]’s The Typewriter – and he’s gotten pretty good with these largely obsolete but lovable electromechanical relics. Interfacing a PC to the Wheelwriter could have been as simple as scrounging up an original interface card for the machine, but those are like hen’s teeth, and besides, where’s the sport in that? So [Chris] hooked a logic analyzer to the well-labeled port that would have connected to the interface card and reverse engineered the somewhat odd serial protocol by banging on keys. The interface he came up with for the Wheelwriter is pretty simple – just a Light Blue Bean Plus and a MOSFET to drive the bus high and low for the correct amount of time. The result is what amounts to an alphanumeric printer, but with a little extra code some dot-matrix graphics are possible too.

Having spent a lot of time reverse engineering serial comms, we can appreciate the amount of work this took to accomplish. Looking to do something similar but don’t have the dough for a logic analyzer? Maybe you can free up $22 and get cracking on a similarly impressive hack.

[via r/arduino]


Filed under: Arduino Hacks, misc hacks

If remembering to hit your foot pedal at the right time during shows is a challenge, this device will take care of it for you.

As creator Franco Molina points out, there’s a lot to worry about when playing guitar in front of an audience. Actually playing is one thing, but you have to pay attention to the crowd, move around on stage, make sure you don’t have any wardrobe malfunctions, and… hit a footswitch to change between clean and distorted channels when appropriate.

Molina’s device may not be able to help you with everything on that list, but by listing to a specially encoded ‘click track’ from a computer or MP3 player, it can automatically switch amplifier modes when appropriate. It does this by using an Arduino Uno along with an amp to listen to the track, then switch a relay to simulate a footswitch.

If you’d like to build your own, check out Molina’s Instructables project page!

[Aguilera Dario] likes his Casio fx-82ES calculator. However, it was missing a few functions, including complex numbers. A Casio fx-991ES has more functions but, of course, costs more. A quick Google revealed that if you press the right buttons, though, you can transform an fx-82ES into an fx-991ES.

Because it is apparently a buffer overflow exploit, the hack involves a lot of keys and once you cycle the power you have to do it again. [Aguilera] realized this would be a good candidate for automation and added a microcontroller to push his buttons. You can see a video of a breadboard version below. He also has a PCB version in the works that should be better integrated.

The automation hardware patches into the button matrix through test pads on the back of the calculator’s PCB. [Aguilera] soldered ribbon cable directly to these pads, then snaked it out through a slot cut into the back of the calculator case where it is terminated with a 0.1″ pin socket. An Arduino Mini is used in the prototype, the next revision will use an ATmega328P on a custom board. The uC interfaces with the button connections using the venerable 4066 chip which is able to act as an analog switch.

The board layout for the PCB version is shown on the project page. There is no word on whether this is meant to be a permanent addition to the calculator, or just plugged in for the exploit and stored away for use the next time power is cycled. Either way, it’s neat to learn about this exploit and a cool challenge to automate it!

If you don’t want to hack up an off-the-shelf calculator, grab some nixie tubes and make your own. Or, if you are short on tubes, try this one.


Filed under: Arduino Hacks

There’s no shortage of Arduino-based clocks around. [Mr_fid’s] clock, though, gets a second look because it is very unique looking. Then it gets a third look because it would be very difficult to read for the uninitiated.

The clock uses three Xs made of LEDs. There is one X for the hours (this is a 24-hour clock), another for the minutes, and one for the seconds. The left side of each X represents the tens’ digit of the number, while the right-side is the units.

But wait… even with two segments on each side of the X, that only allows for numbers from 0 to 3 in binary, right? [Mr_fid] uses another dimension–color–to get around that limitation. Although he calls this a binary clock, it is more accurately a binary-coded-decimal (BCD) clock. Red LEDs represent the numbers one to three. Green LEDs are four to six. Two blue segments represent seven to nine. It sounds complicated, but if you watch the video, below, it will make sense.

This isn’t [Mr_fid’s] first clock. He is using a DS1307 real time clock module to make up for the Arduino’s tendency to drift. Even if you aren’t interested in the clock, the mounting of the LEDs with plastic–and the issues he had isolating them from each other–might come in handy in other displays.

We’ve seen a lot of Arduino clocks over the years, including some that talk. We’ve even seen some that qualify as interactive furniture, whatever that is.


Filed under: Arduino Hacks, clock hacks

A group of high school students in South Korea have created a multi-part rig that lets them play Overwatch in virtual reality.

Their console, which resembles somewhat of a Virtuix Omni treadmill, enables users to move around the battlefield by leaning in whichever direction they want to go, to fire and reload their weapon with a custom toy gun controller, and even to hit things by punching the air.

As you can see in the video below, the setup consists of a Samsung Gear VR headset, a smartphone, Arduino boards, an IMB sensor, a button, a ball bearing, a PC, a motion detection device, and a copy of Overwatch.

Although there’s a bit of input lag, it’s still an incredible project by a team of young Makers. You can read more on PC Gamer.

If you want to reach out to someone, you could always pick up your phone and send a text. But if you’re seeking something a bit more random and indirect, one idea would be to write and attach a message to a biodegradable balloon using Swiss designer David Colombini’s “poetic machine.”

Colombini’s Attachment project allows you to do just that, by dispatching digital notes, images or videos gleaned from the Internet into the atmosphere. Once the Arduino Mega-driven device receives this input, the message is laser-etched on a thin piece of balsa wood, then released into the air (though a human has to ‘reload’ after five launches). Word space is limited to a Twitter-esque 120 characters, but the finder of the balloon can access any additional content that you include through a code on the project’s website.

According to Creative Applications:

Software includes PHP / MySQL database, vvvv (take the message from web database, layout of the message, transform it and stream it to the engraver) and Arduino IDE (controlling all the mechanisms). Hardware includes an Arduino Mega, NEMA 23 motors + drivers, linear actuators, a Bambi air compressor, helium cylinder, Festo pneumatic components (helium + air valves, helium and air pressure sensors, pneumatic cylinders, DHEB) and MicroSlice engraver (based on Arduino Uno).

You can read more on this project as well as its previous version. Additionally, visit the Attachment.cc page to input your own message!

(Photos: David Colombini)

There are certainly many ways to generate an old-looking portrait with moving eyes, but this method from Sonic Robots is simple and seems quite effective. The basic formula is to buy a Victorian-like frame, get a picture of a loved/hated/random person (preferably tweaked to resemble an antique oil painting), then put a strip of paper with eyes printed on it behind the person’s eye sockets.

This eyeball strip is pulled by a servo via a fishing line, and importantly, a rubber band keeps tension on it from the other side. This allows it to quickly snap back into place, creating an effect where the eyes randomly move then stay in place for a while, hopefully causing someone to question his or her sanity.

Since everything is Arduino Uno-based, this could be expanded to include sensors for eye control, or even lighting effects as desired.

You can find more details on the project on SonicRobots.com and its code on GitHub.



  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.