Posts | Comments

Planet Arduino

Archive for the ‘LoRaWAN’ Category

Rakwireless RUI3 open source IoT development platform

RAKwireless has made its RUI3 IoT software development platform open-source so that customers or users can implement “nice-to-have” features on top of the features already implemented by the company which could make it even more versatile in a wider range of IoT scenarios. Introduced in 2022, the RAK Unified Interface v3, or RUI3 for shorts, is a modular IoT platform based on the Arduino SDK with additional functions for IoT connectivity and low power that supports a variety of devices and applications. So developers can learn the language, code once, and use the same software on multiple WisBlock core platforms including Nordic Semi nRF52, STM32, ESP32, and Raspberry Pi RP2040 instead of having to juggle between different the Arduino BSP, the ESP-IDF framework, Nordic nRF Connect SDK, or Raspberry Pi C SDK. Users could already use the RUI3 firmware with the RAK3172 (STM32), RAK4630/RAK4631 (nRF52), or RAK11720 (Apollo3) WisBlock Core [...]

The post RAKwireless open sources RUI3 multi-target IoT development platform appeared first on CNX Software - Embedded Systems News.

It’s time to catch up on all things LoRaWAN® and low-power IoT! Our team is looking forward to returning to The Things Conference this year, joining all LoRa® key players in Amsterdam on September 21st-22nd. Our experts will be showcasing new products and applications relevant to the technology that is putting the “smart” in smart cities, smart agriculture, smart logistics, and more. Indeed, with IoT’s huge growth potential in both B2B and B2C applications, LoRaWAN® is stepping up as one of the technologies of the future. Already established as the low-power connectivity choice, according to The Things Network it is reaping the benefits of innovations that increase efficiency even further – and is poised to support ESG (environmental, social and governance) goals with reduced energy consumption and secure data transmission.

LoRaWAN® novice, or expert? We’ve got you covered

Whether you are just realizing the potential of LoRaWAN® or have been a fan of it since day one (like us!), we’ll have something for you to discover at our booth at The Things Conference:

  • Looking for an entry-level option? The Arduino MKR WAN 1310 offers you the renowned versatility of the practical and cost-effective MKR family and adds LoRa® connectivity to projects requiring low power.
  • Ready to take it up a notch? The solution for advanced applications requiring sturdy computational power is to boost Arduino Pro’s Portenta H7 module (in any of its three variants) with the capability to run embedded computer vision applications, connect wirelessly via LoRa® to the Arduino Cloud (or third-party infrastructure), and activate systems upon the detection of sound events. How? With the Portenta Vision Shield LoRa®, of course!
  • Feel the need for high performance? Pair the Portenta Max Carrier with a Portenta X8 module to add LoRa® connectivity to your project, transforming your robust SOM into a single-board computer or reference design enabling edge AI for industrial, building automation and robotics applications.
  • Need deep indoor coverage or want to add reliable connectivity to your outdoor system? The WisGate Edge Lite 2 and WisGate Edge Pro are your ready-to-use, industrial-grade gateways for LoRaWAN® connectivity powered by RAKwireless™.

The Arduino ecosystem has something for everyone, and might just have everything you need for your next LoRaWAN® idea. Contact us or come by the booth to find out more.

Don’t miss the demos! 

The Things Conference will also be a great opportunity to see some of our products in action. You’ll have the chance to explore our solution to control pests in vineyards with the most effectiveness and the least use of chemicals or labor, for example. Computer vision and LoRa® connectivity combine in a smart trap based on a MKR WAN 1310, which attracts bugs and records their number and type in real-time, allowing for remote monitoring and therefore more cost-effective interventions.

Our experts at The Things Conference will also be happy to show you how Portenta X8 and Portenta Max Carrier can join forces to deploy a secure, industrial-grade Linux computer capable of interacting with equipment/machinery or integrating within an existing smart kiosk: a system ready to collect data from onsite controllers, process them thanks to supported industrial protocols, and finally send useful information to your Cloud or ERP system, acting as a multi-protocol gateway via Wi-Fi, NB/IoT, LTE Cat.M1 or – you guessed it – LoRa®.

People make The Things Conference special

We are proud to have two special events included in the program this year.

On Friday, September 22nd, our Application Engineering Lead, Sebastian Romero, will return to Amsterdam with a keynote showing how IoT-capable hardware can be retrofitted to integrate smart remote management, using Arduino components and LoRaWAN®. Interested in present opportunities, but also curious about the future of IoT from Arduino’s perspective? Then make sure to attend the fireside chat with our CEO Fabio Violante on Thursday, September 21st at 10:30am CEST, to find out how the company’s philosophy will continue to leverage the latest technological evolutions to best serve innovators like you.

Let’s get social! 

We’ll be happy to see you at the booth: come say hi, ask questions and get to know Arduino better. While approaching the venue, keep an eye on the ground and look for our street graffiti – be sure to take photos and tag us on social media: we’ll repost to share highlights with the millions in our community!

The post Let’s connect at The Things Conference 2023 appeared first on Arduino Blog.

It may not be as exciting as other fields, but agriculture is incredibly important to humanity and technological advances have increased yields, efficiency, and productivity many times throughout history. All of the evidence suggests that smart agriculture is going to be at the heart of the next big technological leap and that will require trust in the data. To further that goal, researchers from Newcastle University and the University of Nottingham developed the Squirrel Box.

The Squirrel Box is a small, remote device that measures key soil metrics, like pH levels, moisture content, ambient conditions, and NPK (nitrogen, phosphorous, and potassium) levels. That data is important in determining the health of the soil in a field. It is useful for protecting potential yields and also for maintaining the soil to achieve maximum productivity. The Squirrel Box can transmit its data over long distances via LoRaWAN® to a WisGate Edge Lite 2, which is an eight-channel gateway that many boxes can connect to in order to provide a comprehensive picture of soil health across an entire farm. An Arduino MKR WAN 1310 board monitors the sensors and contains an onboard LoRa® transceiver.

But as the Squirrel Box team points out in their paper, smart agriculture requires trust. If farmers are to rely on this data, they need to trust that it is accurate, reliable, and tamper-proof. For that reason, they implemented decentralized communication that is robust enough to survive the failure of any single unit. They also turned to machine learning to validate the data and identify potential anomalies that might represent anything from a sensor problem to falsified data. This focus on trust makes farmers more likely to adopt smart agricultural techniques.

The post The Squirrel Box aims to bring trust to smart agriculture appeared first on Arduino Blog.

Humans are animals and like all animals, we evolved in mostly outdoor conditions where the air is nice and fresh. But modern society keeps most of us indoors the vast majority of the time, which could have negative health effects. There are many potential hazards, including a lack of sunlight and psychological effects, but CO2 may pose a more tangible risk. To keep tabs on that risk within classrooms, a team from Polytech Sorbonne built this small CO2 monitor.

This CO2 monitor performs two functions: it shows anyone nearby the CO2 levels in the area and it uploads that data over LoRaWAN to a central hub that can track the levels across many locations. A school could, for example, put one of these CO2 monitors in every classroom. An administrator could then see the CO2 levels in every room in real time, along with historical records. That would alert them to immediate dangers and to long term trends.

At the heart of this CO2 monitor is an Arduino MKR WAN 1310 development board, which has built-in LoRa® connectivity. It uses a Seeed Studio Grove CO2, temperature, and humidity sensor to monitor local conditions. To keep power consumption to a minimum, the data displays on an e-ink screen and an Adafruit TPL5110 timer only wakes the device up every ten minutes for an update. Power comes from a lithium-ion battery pack, with a DFRobot solar charger topping up the juice.

It uploads data through The Things Network to a PlatformIO web interface. An Edge Impulse machine learning model detects anomalies, so it can sound a warning even if nobody is watching. The enclosure is 3D-printable.

The post Small, MKR WAN 1310-powered device monitors CO2 levels in classrooms appeared first on Arduino Blog.

Humans are animals and like all animals, we evolved in mostly outdoor conditions where the air is nice and fresh. But modern society keeps most of us indoors the vast majority of the time, which could have negative health effects. There are many potential hazards, including a lack of sunlight and psychological effects, but CO2 may pose a more tangible risk. To keep tabs on that risk within classrooms, a team from Polytech Sorbonne built this small CO2 monitor.

This CO2 monitor performs two functions: it shows anyone nearby the CO2 levels in the area and it uploads that data over LoRaWAN to a central hub that can track the levels across many locations. A school could, for example, put one of these CO2 monitors in every classroom. An administrator could then see the CO2 levels in every room in real time, along with historical records. That would alert them to immediate dangers and to long term trends.

At the heart of this CO2 monitor is an Arduino MKR WAN 1310 development board, which has built-in LoRa® connectivity. It uses a Seeed Studio Grove CO2, temperature, and humidity sensor to monitor local conditions. To keep power consumption to a minimum, the data displays on an e-ink screen and an Adafruit TPL5110 timer only wakes the device up every ten minutes for an update. Power comes from a lithium-ion battery pack, with a DFRobot solar charger topping up the juice.

It uploads data through The Things Network to a PlatformIO web interface. An Edge Impulse machine learning model detects anomalies, so it can sound a warning even if nobody is watching. The enclosure is 3D-printable.

The post Small, MKR WAN 1310-powered device monitors CO2 levels in classrooms appeared first on Arduino Blog.

Humans are animals and like all animals, we evolved in mostly outdoor conditions where the air is nice and fresh. But modern society keeps most of us indoors the vast majority of the time, which could have negative health effects. There are many potential hazards, including a lack of sunlight and psychological effects, but CO2 may pose a more tangible risk. To keep tabs on that risk within classrooms, a team from Polytech Sorbonne built this small CO2 monitor.

This CO2 monitor performs two functions: it shows anyone nearby the CO2 levels in the area and it uploads that data over LoRaWAN to a central hub that can track the levels across many locations. A school could, for example, put one of these CO2 monitors in every classroom. An administrator could then see the CO2 levels in every room in real time, along with historical records. That would alert them to immediate dangers and to long term trends.

At the heart of this CO2 monitor is an Arduino MKR WAN 1310 development board, which has built-in LoRa® connectivity. It uses a Seeed Studio Grove CO2, temperature, and humidity sensor to monitor local conditions. To keep power consumption to a minimum, the data displays on an e-ink screen and an Adafruit TPL5110 timer only wakes the device up every ten minutes for an update. Power comes from a lithium-ion battery pack, with a DFRobot solar charger topping up the juice.

It uploads data through The Things Network to a PlatformIO web interface. An Edge Impulse machine learning model detects anomalies, so it can sound a warning even if nobody is watching. The enclosure is 3D-printable.

The post Small, MKR WAN 1310-powered device monitors CO2 levels in classrooms appeared first on Arduino Blog.

Arduino Cloud works with LoRaWAN on The Things Stack

The Things Stack (TTS) and Arduino Cloud are now fully interfaced and open up a world of connected opportunities. When you configure a LoRaWAN device now, it’ll automatically be registered on The Things Stack platform, too.

Arduino Cloud Goes Long Range

Let’s have a quick crash course in LoRaWAN, before we go any further.

An abbreviation of long range wide area network, LoRaWAN is a very low power wireless connectivity system, much like Wi-Fi. But it operates on a different (unlicensed) frequency that’s able to transmit and receive signals a lot further. It boasts distances that are measured in kilometers, rather than meters, as with WiFi or Bluetooth.

LoRa isn’t new to Arduino, of course. But now your devices can make use of over 22,000 public gateways around the world that are connected to the TTS service. In a very over-simplified way, these gateways translate radio packets into internet packets. A radio signal effectively becomes data sent over the internet, and vice versa. This vastly extends wireless internet coverage and connects remote IoT devices to your Arduino Cloud.

It’s not just about putting sensors, devices or projects in remote or rural locations, though. It’s about connecting to the internet where there is no Wi-Fi, and without the need for a costly cellular data connection. And it’s power consumption is very low. So a lot of these far distant devices can run on batteries or solar power.

Set up LoRaWAN and The Things Stack on Arduino Cloud

Things, Things and More Things

When you configure a new LoRaWAN compatible device in your Arduino Cloud, such as a MKR WAN 1300, it’s now automatically registered as a device on The Things Stack.

You’ll automatically see a new menu during setup, which lets you select your region. This is important, as different regions and countries use different LoRaWAN frequency bands.

And that’s it! No need for you to do anything else. Easily the simplest and fastest way to connect to LoRa devices in an Arduino project. Or any electronics project, for that matter, since Arduino Cloud lets you seamlessly connect all kinds of different devices.

Arduino MKR WAN 1300 Arduino Cloud  LoRaWAN on The Things Stack

Complete the setup just as you would with any other device on Arduino Cloud. Sync your variables, connect your devices, build your dashboards. As long as your board is in range of a TTS-connected gateway, it’s part of your Arduino Cloud. Just as if it was sitting next to you on your Wi-Fi network, even though it might be 15 kilometers away! Or you could set up your very own LoRaWAN gateway that supports TTS, if you don’t have one in range.

There’s a more detailed tutorial over on Arduino Docs, although it’s not a complex procedure by any means. It’s got some excellent advice on setting up and accessing The Things Console, which LoRa fans will find very useful. Then there’s a quick and easy test project to make sure everything’s working as you want it to.

It’s still early days for LoRa. But any Arduino lover who takes an interest in this exciting technology will quickly get hooked on it, and the possibilities it offers. Tell us all about your LoRa projects over on social media, and how you’re building them on Arduino Cloud.

The post Connect to Arduino Cloud from far away with LoRaWAN and The Things Stack appeared first on Arduino Blog.



  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook