Posts | Comments

Planet Arduino

Archive for the ‘mega’ Category

While you may know on some level that an Arduino can help you make music, you probably haven’t seen as good an implementation as this MIDI controller by Switch & Lever. 

The device features a numeric pad for note input, which can also be used as a drum pad, and a variety of knobs and even a joystick for modifying the beats. Controls are housed inside a beautiful laser-cut, glued, and finished wooden enclosure.

An Arduino Mega (with its 54 digital IO and 16 analog pins) is used to accommodate the inputs, and data is passed on to a digital audio workstation, or DAW, to produce actual sound. 

Code and circuit diagrams are available here if you want to build one, though your setup can be customized however you like!

Nerf guns can be a lot of fun, but what if you want your launcher to shoot 10 projectiles simultaneously? Is so, then look no further than James Bruton’s custom blaster.

His 3D-printed project employs two BLDC-powered rollers to accelerate cartridges of 10 darts each, and allows for quick reloading via a clever manual locking mechanism. The device holds five magazines, for total of 50 darts.

When loaded, an arcade-style button fires the darts, pushing them into the rollers at the same time using a couple of servo motors. Everything is powered by a six-cell 24V LiPo battery, while an Arduino Mega is used for control, and to track which cartridge is in place, enabling the operator to concentrate on getting shots downrange!

Researchers at the University of Waterloo in Canada have developed a novel hand-based input technique called Tip-Tap that amazingly requires no batteries. 

The wearable device uses a series of three custom RFID tags on both the thumb and index finger with half an antenna on each digit. When the fingertips are touched together, a signal is sent to the computer indicating where the thumb and index finger intersect, which is mapped as a position on a 2D grid.

Usability experiments were carried out using an Arduino Mega, with both on-screen visual feedback and without. Possible applications could include the medical field, where Tip-Tap can be added to disposable gloves enabling surgeons to access a laptop without dictating inputs to an assistant or sterilization issues.

We describe Tip-Tap, a wearable input technique that can be implemented without batteries using a custom RFID tag. It recognizes 2-dimensional discrete touch events by sensing the intersection between two arrays of contact points: one array along the index fingertip and the other along the thumb tip. A formative study identifies locations on the index finger that are reachable by different parts of the thumb tip, and the results determine the pattern of contacts points used for the technique. Using a reconfigurable 3×3 evaluation device, a second study shows eyes-free accuracy is 86% after a very short period, and adding bumpy or magnetic passive haptic feedback to contacts is not necessary. Finally, two battery-free prototypes using a new RFID tag design demonstrates how Tip-Tap can be implemented in a glove or tattoo form factor.

Maker ‘pashiran’ purchased a music box which could be programmed with punch cards, but soon found that actually creating tunes this way by hand was exhausting. His solution was to automate the process, designing a fixture to punch the cards for him!

His new auto-programmer acts as a simple CNC machine, using stepper motors to roll cards into place and then move the punch head perpendicular to this motion to produce the correct note. The holes are punched out over and over with a DC motor, before being removed to play a beautiful tune on the mechanical music box. Computing power is provided by an Arduino Mega, while the user interface consists of an LCD display and an encoder. 

You can listen to 250 notes worth of “Be Our Guest” below, plus find more details on the project here.

Convex regular icosahedrons contain 30 edges and 12 vertices. This makes for an interesting math problem, but as demonstrated by this project out of the LVL1 hackerspace in Louisville, Kentucky, its geometry also presents an excellent target for a massive number of LEDs.

Their build, in fact, consists of 708 programmable LEDs arranged facing inward on the edges and doubled over on each vertex support. These supports lead to a central stainless steel ball, reflecting a massive amount of light to the surrounding area. 

Everything is controlled by an Arduino Mega, along with an Uno-style prototyping shield, and power is provided by a massive 5V 60A supply unit.

When using a virtual reality (VR) system, you may need to flip a switch, touch a button, etc., which can be represented by a carefully coordinated series of pixels in front of your eyes. As a physical alternative — or augmentation — researchers at the National Chiao Tung University in Hsinchu, Taiwan have developed a system of interchangeable physical control panels, called FaceWidgets, that reside on the backside of head-mounted unit itself.

When a wearer places their palm near their face (and headset), this is sensed and an on-screen canvas appears depending on the application. They can then manipulate these widgets both physically and in the virtual world to control the experience. 

Physical interactions are detected with the help of an Arduino Mega and the facial control pad even extends and retracts for optimal usage via a motor shield and stepper motors.

We present FaceWidgets, a device integrated with the backside of a head-mounted display (HMD) that enables tangible interactions using physical controls. To allow for near range-to-eye interactions, our first study suggested displaying the virtual widgets at 20 cm from the eye positions, which is 9 cm from the HMD backside. We propose two novel interactions, widget canvas and palm-facing gesture, that can help users avoid double vision and allow them to access the interface as needed. Our second study showed that displaying a hand reference improved performance of face widgets interactions. We developed two applications of FaceWidgets, a fixed-layout 360 video player and a contextual input for smart home control. Finally, we compared four hand visualizations against the two applications in an exploratory study. Participants considered the transparent hand as the most suitable and responded positively to our system.

If you’ve ever thought that your musical performance needed more LEDs, then James Bruton’s DJ helmet may be just the thing for you.

The YouTuber’s wearable device is built on the base of a protective face shield, substituting in a 3D-printed support for an 8×32 LED matrix, as well as four smaller 8×8 LED matrices arranged above and below the main section.

The 512 LEDs are powered using a portable LiPo battery and a 10A power regulator. Control is via an Arduino Mega, which is connected to an RJ45 jack that enables it to work with DMX lighting data. 

The result is a spectacular display, shown off nicely in an electronic concert (with his barcode guitar) starting at around 8:20 in the video below!

You likely use touchscreens every day when interacting with your phone — perhaps even to read this article — but prototyping your own capacitive matrix is unfortunately out of reach for most makers and electronics novices. As seen here, researchers have devised a new technique that will allow for easier prototyping of this type of interface, which can function on both flat and curved surfaces, over a variety of materials.

To accomplish this, the team developed an Arduino library, as well as one for Processing, and used OpenCV to track multiple finger positions. Interactions have been tested with an Uno, Mega and LilyPad, and would presumably work with almost any other Arduino board as needed!

We introduce Multi-Touch Kit, a low-cost do­ it-yourself technique to enable interaction designers, makers, and electronics novices alike to rapidly create and experiment with high-resolution multi-touch sensors of custom sizes, ge­ ometries, and materials. 

In contrast to existing solutions, the Multi-Touch Kit is the first technique that works with a commodity microcontroller (our implementation uses a standard Arduino) and does not require any specialized hardware. As a technical enabler, we contribute a modified multi-touch sensing scheme that lever­ ages the human body as a transmission channel of MHz range signals through a capacitive near-field coupling mechanism. This leads to a clean signal that can be readily processed with the Arduino’s built-in analog-to-digital converter, resulting in a sensing accuracy comparable to industrial multi-touch con­ trollers. Only a standard multiplexer and resistors are required alongside the Arduino to drive and read out a touch sensor matrix. 

The technique is versatile and compatible with many types of multi-touch sensor matrices, including flexible sensor films on paper or PET, sensors on textiles, and sensors on 3D printed objects. Furthermore, the technique is compatible with sensors of various scale, curvature, and electrode materials (silver, copper, conductive yarn) fabricated using conductive printing, hand-drawing with a conductive pen, cutting, or stitching. 

To experience an escape room, you normally need a rather large dedicated space. This project, however, by creator Jason R, takes this physical clue-solving concept and shrinks it down to fit within a small suitcase!

To play, participants have to work their way through a series of problems, supplied in the ‘TOP SECRET’ documentation attached to and inside the device, connecting jumpers, flipping switches, and turning knobs as needed. 

A computerized voice guides you along the way, with LEDs and an LCD panel providing visual output as you save the day. The game is controlled via an Arduino Mega, while power supplied by a rechargeable USB power bank.

I created an “escape room-esque” game that is contained within a small suitcase. In total, there are about 15-20 puzzles and sub-puzzles that need to be solved in order to disarm the “explosives”. Players are given 60 minutes to arrange puzzles, decipher clues hidden in QR codes, connect cities in maps to form numbers, decode morse signals, and other similar things. 

If you’ve ever used a VR system and thought what was really missing is the feeling of being hit in the face, then a team researchers at the National Taiwan University may hold just the solution. 

ElastImpact takes the form of a head-mounted display with two impact drivers situated roughly parallel to one’s eyes for normal — straight-on — impacts, and another that rotates about the front of your face for side blows.

Each impact driver first stretches an elastic band using a gearmotor, then releases it with a micro servo when an impact is required. The system is controlled by an Arduino Mega, along with a pair of TB6612FNG motor drivers. 

Impact is a common effect in both daily life and virtual reality (VR) experiences, e.g., being punched, hit or bumped. Impact force is instantly produced, which is distinct from other force feedback, e.g., push and pull. We propose ElastImpact to provide 2.5D instant impact on a head-mounted display (HMD) for realistic and versatile VR experiences. ElastImpact consists of three impact devices, also called impactors. Each impactor blocks an elastic band with a mechanical brake using a servo motor and extending it using a DC motor to store the impact power. When releasing the brake, it provides impact instantly. Two impactors are affixed on both sides of the head and connected with the HMD to provide the normal direction impact toward the face (i.e., 0.5D in z-axis). The other impactor is connected with a proxy collider in a barrel in front of the HMD and rotated by a DC motor in the tangential plane of the face to provide 2D impact (i.e., xy-plane). By performing a just-noticeable difference (JND) study, we realize users’ impact force perception distinguishability on the heads in the normal direction and tangential plane, separately. Based on the results, we combine normal and tangential impact as 2.5D impact, and performed a VR experience study to verify that the proposed 2.5D impact significantly enhances realism.



  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook