Posts | Comments

Planet Arduino

Archive for the ‘mega’ Category

After picking up a free arcade machine, YouTuber “Another Maker” has naturally been considering what to do with it. One of the more interesting components included is the 1/5/10/20 U.S. dollar bill acceptor, which he outlines in the video below.

The cash reader is powered by a 12V supply, and “emulates” quarter inputs to the machine by sending multiple signals for each bill. Meaning, a dollar would be output as four quarters, five times that for a five dollar bill, and so on. This functionality is shown at the end of the clip on an Arduino Mega with an LCD keypad shield. The machine also has a 5V input, which can activated by an Arduino to make it flash LEDs and reject all bills when “business is closed.”

The code that enables it to read the device can be found on GitHub. And in case you’re wondering what Another Maker ended up building…

What does one do with over 1,000 LEDs, white acrylic, and 288 IR sensors? If you’re Redditor “jordy_essen,” you create an interactive light panel.

In one mode, the user pull a reflective tool across the sensors to draw a paths, with potentiometers implemented to select the color. It can also be set up to play a sort of whack-a-mole game, where one has to activate the sensor in the same area where it illuminates.

For this amazing device, jordy_essen uses not one, or even two, but six Arduino Mega boards to drive the LEDs directly — in turn controlled by a webpage running on a Raspberry Pi. If that wasn’t enough hardware, an Uno is tasked with taking inputs from the color potentiometers. 

It’s a brilliant project in any sense of the word!

If you want to “enhance your athletic training regimen,” or perhaps just have a bit of fun with robotically launched ping pong balls, then be sure to check out the Pingo apparatus shown in the video below. This robot moves back and forth on four DC motor-powered wheels, searching for targets with an ultrasonic rangefinder.

When something comes into view, Pingo adjusts its ping pong launching tube’s angle to match the target distance, then loads a ball and flings it into the air with a pair of spinning disks. 

The device is controlled by an Arduino Mega and uses a half-dozen DC motors, a pair of steppers, and even a servo to accomplish its mission.

Flip displays are an interesting piece of technology, physically moving segments into place that stay put until other information is needed. Michael Klements has been especially fascinated by these devices, and after inspiration from another project, he decided to craft his own.

His version utilizes 14 micro servos to flip segments into a visible position, then rotate them to 90° when no longer needed. This “off” mode displays a slimmer profile, and the sides and back are painted black, making them much less visible.

An Arduino Mega, with 15 possible PWM outputs, is used to control the servos, while a hobby RC-style battery eliminator circuit provides power to the motors. 

Be sure to check out the build process and in-action shots below! 

SunVox synth software allows you to create electronic music on a wide variety of platforms. Now, with his ZT-2020 project — which resembles a miniature arcade game — YouTuber “fascinating earthbound objects” has a dedicated input scheme.

This cabinet prominently features a wide array of buttons, a directional input from a PlayStation controller, and 16 potentiometer knobs. There’s also a screen on top for video output. 

Inside a Raspberry Pi runs SunVox, while most of the buttons and all of the input knobs are connected to an Arduino Mega. The Mega plays the role of MIDI controller as well, passing digital music info along to produce beautiful electronic music!

Omni wheels normally contain a number of rollers arranged on their circumference, allowing them to slide left and right and perform various tricks when combined with others. The rollers on UCLA researchers Junjie Shen and Dennis Hong’s OmBURo, however, are quite different in that they are actually powered, enabling a single wheel to accomplish some impressive feats on its own.

These powered rollers give OmBURo the ability to move in both longitudinal and lateral directions simultaneously, balancing as a dual-axis wheeled inverted pendulum. 

Control is accomplished via an Arduino Mega along with an IMU and encoders for its two servo motors —one tasked with driving the wheel backwards and forwards, the second for actuating the rollers laterally via helical gears and a flexible shaft. 

As seen in the video below, the robot can follow different paths via remote control, and even balance on an inclined plane. More informaton on the impressive build is available in the Shen and Hong’s research paper here.

A mobility mechanism for robots to be used in tight spaces shared with people requires it to have a small footprint, to move omnidirectionally, as well as to be highly maneuverable. However, currently there exist few such mobility mechanisms that satisfy all these conditions well. Here we introduce Omnidirectional Balancing Unicycle Robot (OmBURo), a novel unicycle robot with active omnidirectional wheel. The effect is that the unicycle robot can drive in both longitudinal and lateral directions simultaneously. Thus, it can dynamically balance itself based on the principle of dual-axis wheeled inverted pendulum. This letter discloses the early development of this novel unicycle robot involving the overall design, modeling, and control, as well as presents some preliminary results including station keeping and path following. With its very compact structure and agile mobility, it might be the ideal locomotion mechanism for robots to be used in human environments in the future.

Omni wheels normally contain a number of rollers arranged on their circumference, allowing them to slide left and right and perform various tricks when combined with others. The rollers on UCLA researchers Junjie Shen and Dennis Hong’s OmBURo, however, are quite different in that they are actually powered, enabling a single wheel to accomplish some impressive feats on its own.

These powered rollers give OmBURo the ability to move in both longitudinal and lateral directions simultaneously, balancing as a dual-axis wheeled inverted pendulum. 

Control is accomplished via an Arduino Mega along with an IMU and encoders for its two servo motors —one tasked with driving the wheel backwards and forwards, the second for actuating the rollers laterally via helical gears and a flexible shaft. 

As seen in the video below, the robot can follow different paths via remote control, and even balance on an inclined plane. More informaton on the impressive build is available in the Shen and Hong’s research paper here.

A mobility mechanism for robots to be used in tight spaces shared with people requires it to have a small footprint, to move omnidirectionally, as well as to be highly maneuverable. However, currently there exist few such mobility mechanisms that satisfy all these conditions well. Here we introduce Omnidirectional Balancing Unicycle Robot (OmBURo), a novel unicycle robot with active omnidirectional wheel. The effect is that the unicycle robot can drive in both longitudinal and lateral directions simultaneously. Thus, it can dynamically balance itself based on the principle of dual-axis wheeled inverted pendulum. This letter discloses the early development of this novel unicycle robot involving the overall design, modeling, and control, as well as presents some preliminary results including station keeping and path following. With its very compact structure and agile mobility, it might be the ideal locomotion mechanism for robots to be used in human environments in the future.

Shape-shifting interfaces, which could be deployed to create dynamic furniture, structures or VR environments, have great potential; however, creating them is often quite difficult. To simplify things, researchers from the University of Colorado Boulder have developed “LiftTiles,” modular blocks that raise to the desired height (between 15 and 150 centimeters) via air pressure and then collapse under spring force when needed.

Each pneumatic tile costs under $10 USD, weighs only 10kg each, and supports up to 10kg of weight. To demonstrate their design, the team used solenoid valves to inflate blocks and servo motors to open release valves that allow the blocks deflate and compress. 

The system is based on an Arduino Mega board, along with an SR300 depth camera to measure the height of each section and client software running on a control computer. 

More details can be found in the project’s research paper.

If you need another idea for how to creatively diffuse LED lighting, then look no further than the “Light Me Up!” project by Hyewon Shin, Eunjeong Ko, and Junsung Yi. 

Their setup uses 312 3D-printed and laser-cut light triangles, each of which contains a trio of RGB LEDs. Users select the desired light by pressing the triangles themselves, via buttons concealed beneath the main assembly. Several Arduino boards are used to control the massive structure.

With such an involved triangular display, a number of interesting 3D-like shapes and even words can be created by users. Alternatively, smaller triangle arrangements can also be constructed using the same build concepts. 

This project has several triangles that form a hexagonal shape. So you can create stereoscopic patterns according to how you design light! Just press each piece and various colors will be gradated, and when the color you want comes out, just hit the hand you pressed and it will continue to shine beautifully with the color you wanted!

Check out its triangular luminescence in the videos below!

Apparently not satisfied with a single PC monitor, aviation enthusiast Ryan H came up with his own custom, 3D-printable cockpit setup for the Garmin G1000 avionics suite. Designed around the X-Plane 11 flight simulator, the system uses a 12.1” LCD panel for flight data along with several additional inputs, all controlled by an Arduino Mega running SimVim firmware.

The auxiliary display/input assemblies interface with the Arduino, enabling it to handle 32 tactile switches plus one standard and five dual rotary encoders via five CD74HC4067 16-channel multiplexers.

Build cost is around $250 per screen. 3D-print files and other information are available on Thingiverse



  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook