Posts | Comments

Planet Arduino

Archive for the ‘transceiver’ Category

[Dan], admirably rose to the occasion when his son wanted a new toy. Being a dedicated father — and instead of buying something new — he took the opportunity to abscond to his workbench to convert a Wiimote Nunchuck into a fully wireless controller for his son’s old r/c car — itself, gutted and rebuilt some years earlier.

Unpacking the nunchuck and corralling the I2C wires was simply done. From there, he combined a bit of code, an Arduino pro mini, and two 1K Ohm resistors to make use of an Aurel RTX-MID transceiver that had been lying around. Waste not, want not.

A TI Stellaris Launchpad is the smarts of the car itself, in concordance with a TB6612FNG motor controller. The two Solarbotics GM9 motors with some 3D printed gears give the car some much needed gusto.

In Dan’s own humble words: “nothing out of the ordinary, just a nice example of what one can do with parts mostly gathering dust around any hacker’s house.” If any new parents out there have a spare Wiimote stashed away, you can use the infrared LEDs to make a fairly effective baby monitor.


Filed under: Arduino Hacks, toy hacks
Lug
14

HamShield Puts Your Arduino On The Radio

Amateur Radio, arduino, arduino hacks, arps, ham radio, hamshield, packet radio, radio hacks, shield, transceiver Commenti disabilitati su HamShield Puts Your Arduino On The Radio 

Anybody can grab a USB TV tuner card and start monitoring the airwaves, but to get into the real meat of radio you’ll need your amateur radio license. Once you have that, the bandwidth really opens up… if you can afford the equipment. However, [spaceneedle] and friends have dramatically lowered the costs while increasing the possibilities of owning a radio by creating this ham radio shield for the Arduino.

The HamShield, is a versatile shield for any standard Arduino that allows it to function like an off-the-shelf radio would, but with a virtually unlimited number of functions. Anything that could be imagined can be programmed into the Arduino for use over the air, including voice and packet applications. The project’s sandbox already includes things like setting up mesh networks, communicating over APRS, setting up repeaters or beacons, monitoring weather stations, and a whole host of other ham radio applications.

HamShield operates on a wide range of frequencies and only uses a 250 mW amplifier. The power draw is small enough that the HamShield team operated it from a small solar panel, making it ideal for people in remote areas. The project is currently gathering funding and has surpassed their goal on Kickstarter, branding itself appropriately as the swiss army of amateur radio. The transceiver seems to be very robust, meaning that the only thing standing in the way of using this tool is simply writing the Arduino code for whatever project you want to do, whether that’s as a police scanner or even just a frequency counter. And if you want to follow along on hackaday.io, the project can be found here.


Filed under: Arduino Hacks, radio hacks

Introduction

In this article we examine the Seeedstudio ”Bluetooth Bee“ modules and how they can be used in a simple way in conjunction with Android devices to control the Arduino world.  Here is an example of a Bluetooth Bee:

For the curious, the hardware specifications are as follows:

  • Typical -80dBm sensitivity
  • Up to +4dBm RF transmit power
  • Fully Qualified Bluetooth V2.0+EDR 3Mbps Modulation
  • Low Power 1.8V Operation, 1.8 to 3.6V I/O
  • UART interface with programmable baud rate
  • Integrated PCB antenna.
  • XBee compatible headers

You may have noticed that the Bluetooth Bee looks similar to the Xbee-style data transceivers – and it is, in physical size and some pinouts, for example:

The neat thing with the BtB (Bluetooth Bee) is that it is compatible with Xbee sockets and Arduino shields. It is a 3.3V device and has the same pinouts for Vcc, GND, TX and RX – so an existing Xbee shield will work just fine.

In some situations you may want to use your BtB on one UART and have another for debugging or other data transport from an Arduino – which means the need for a software serial port. To do this you can get a “Bees Shield” which allows for two ‘Bee format transceivers on one board, which also has jumpers to select software serial pins for one of them. For example:

Although not the smallest, the Bees Shield proves very useful for experimenting and busy wireless data transmit/receive systems. More about the Bees Shield can be found on their product wiki.

Quick Start 

In the past many people have told me that bluetooth connectivity has been too difficult or expensive to work with. In this article I want to make things as simple as possible, allowing you to just move forward with your ideas and projects. One very useful function is to control an Arduino-compatible board with an Android-based mobile phone that has Bluetooth connectivity. Using the BtB we can create a wireless serial text bridge between the phone and the Arduino, allowing control and data transmission between the two.

We do this by using a terminal application on the Android device – for our examples we will be using “BlueTerm” which can be downloaded from Google Play – search for “blueterm” as shown below:

In our Quick Start example, we will create a system where we can turn on or off four Arduino digital output pins from D4~D7. (If you are unsure about how to program an Arduino, please consider this short series of tutorials). The BtB is connected using the Bees shield. This is based on the demonstration sketch made available on the BtB Wiki page - we will use commands from the terminal on the Android device to control the Arduino board, which will then return back status.

As the BtB transmit and receive serial data we will have it ‘listen’ to the virtual serial port on pins 9 and 10 for incoming characters. Using a switch…case function it then makes decisions based on the incoming character. You can download the sketch from here. It is written for Arduino v23. If you were to modify this sketch for your own use, study the void loop() section to see how the incoming data is interpreted, and how data is sent back to the Android terminal using blueToothSerial.println

Before using it for the first time you will need to pair the BtB with your Android device. The PIN is set to a default of four zeros. After setting up the hardware and uploading the sketch, wait until the LEDs on the BtB blink alternately – at this point you can get a connection and start communicating. In the following video clip you can see the whole process:


Where to from here?

There are many more commands that can be set using terminal software from a PC with a Bluetooth adaptor, such as changing the PIN, device name and so on. All these are described in the BtB Wiki page along with installation instructions for various operating systems.

Once again I hope you found this article interesting and useful. The Bluetooth Bees are an inexpensive and useful method for interfacing your Arduino to other Bluetooth-compatible devices. For more information and product support, visit the Seeedstudio product pages.

Bluetooth Bees are available from Seeedstudio and their network of distributors.

Disclaimer - Bluetooth Bee products used in this article are promotional considerations made available by Seeedstudio.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

The post Arduino, Android and Seeedstudio Bluetooth Bee appeared first on tronixstuff.



  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook