Posts | Comments

Planet Arduino

Archive for the ‘microcontrollers’ Category

It’s the most wonderful time of the year! No, we’re not talking about the holiday season, although that certainly has its merits. What we mean is that it’s time for the final projects from [Bruce Land]’s ECE4760 class. With the giving spirit and their mothers in mind, [Adarsh], [Timon], and [Cameron] made a programmable lock box with four-factor authentication. That’s three factors more secure than your average Las Vegas hotel room safe, and with a display to boot.

Getting into this box starts with a four-digit code on a number pad. If it’s incorrect, the display will say so. Put in the right code and the system will wait four seconds for the next step, which involves three potentiometers. These are tuned to the correct value with a leeway of +/- 30. After another four-second wait, it’s on to the piezo-based knock detector, which listens for the right pattern. Finally, a fingerprint scanner makes sure that anyone who wants into this box had better plan ahead.

This project is based on Microchip’s PIC32-based Microstick II, which [Professor Land] starting teaching in 2015. It also uses an Arduino Uno to handle the fingerprint scanner. The team has marketability in mind for this project, and in the video after the break, they walk through the factory settings and user customization.

We have seen many ways to secure a lock box. How about a laser-cut combination safe or a box with a matching NFC ring?

Filed under: Arduino Hacks, Microcontrollers, security hacks

Sometimes less is more. This is especially true when dealing with microcontrollers with limited I/O pins. Even if you have lots of I/O, sometimes you are need to pack a lot into a little space. [Hugatry] was inspired by the simple interface found on a lot of flashlights: one button. Push it and it turns on. Push it again, and it switches modes. You cycle through the modes until you finally turn it back off. One button provides mutliple functions. The question is how can you use a power switch as an I/O device? After all, when you turn the power off, the microprocessor stops operating, right?

[Hugatry’s] answer is quite simple. He connects a resistor/capacitor network to an I/O pin (or multiple pins). When the processor turns on initially, the pin will read low and the capacitor will charge up. If you turn the power off, the CPU voltage will fall rapidly to zero, but the voltage on the capacitor will discharge slower. If you wait long enough and turn the power on, there’s no difference from that first power on event. But if you turn the power on quickly, the capacitor voltage will still be high enough to read as a logic one.

What that means is that the processor as part of its start up can detect that it was recently turned off and take some action. If it remembers the previous state in nonvolatile memory, you can have the code cycle through multiple states, just like a flashlight. You can see a video of the setup, below.

[Hugatry] included some simple Arduino code that illustrates the concept. However, the technique is simple enough that you can adapt it to other projects easily.

Think one button isn’t enough to do anything interesting? Think again. Then again, Amazon probably has a patent on things with one button.

Filed under: Arduino Hacks, Microcontrollers

Before the Arduino took over the hobby market (well, at least the 8-bit segment of it), most hackers used PIC processors. They were cheap, easy to program, had a good toolchain, and were at the heart of the Basic Stamp, which was the gateway drug for many microcontroller developers.

[AXR AMR] has been working with the Pinguino, an Arduino processor based on a PIC (granted, an 18F PIC, although you can also use a 32-bit device, too). He shows you how to build a compatible circuit on a breadboard with about a dozen parts. The PIC has built-in USB. Once you flash the right bootloader, you don’t need anything other than a USB cable to program. You can see a video of this below.

You will need a programmer to get the initial bootloader, but there’s plenty of cheap options for that. The IDE is available for Windows, Linux, and the Mac. Of course, you might wonder why you would use a PIC device instead of the more traditional Arduino devices. The answer is: it depends. Every chip has its own set of plusses and minuses from power consumption to I/O devices, to availability and price. These chips might suit you, and they might not. That’s your call.  Of course, the difference between Microchip and Atmel has gotten less lately, too.

We’ve covered Pinguino before with a dedicated board. If you never played with a Basic Stamp, you might enjoy learning more about it. If you’re looking for more power than a PIC 18F can handle, you might consider the Fubarino, a PIC32 board you can use with the Arduino IDE.

Filed under: Arduino Hacks, Microcontrollers

[Agp.cooper] saw a vintage 4Kx4 bit RAM chip and decided that it needed a CPU design to match. The TTL design fits on two boards and has a functional front panel.

This custom CPU project has a few interesting bits worth noting. First, it is small enough that you can wrap your head around it pretty easily. And [Agp.cooper] gives  a good account of the instructions set architecture choices he considered and why he settled on the final design.

Testing adapter design connects Arduino to the CPU boards

Another interesting twist is the testing. Each of the boards can mate with an Arduino which will exercise and test its functions. This allows each part of the design to test out before trying to bring up the whole CPU.

The PCBs are from EasyEDA, a service we looked at awhile back. The boards for this offering ran about $70 total, but [Agp.cooper] mentions the cost is reasonable for a one-off project, but the two-week turnaround begs for getting it right the first time lest your project sit dormant on the bench during a respin.

This is the same designer, by the way, that did the Wierd CPU, and he compares it with his 4-bit creation some in the build log.

Thanks to [starhawk] for the tip.

Filed under: Arduino Hacks, Microcontrollers

There was a time, not so long ago, when all the cool kids were dual-booting their computers: one side running Linux for hacking and another running Windows for gaming. We know, we were there. But why the heck would you ever want to dual-boot an Arduino? We’re still scratching our heads about the application, but we know a cool hack when we see one; [Vinod] soldered the tiny surface-mount EEPROM on top of the already small AVR chip! (Check the video below.)

aAside from tiny-soldering skills, [Vinod] wrote his own custom bootloader for the AVR-based Arduino. With just enough memory to back up the AVR’s flash, the bootloader can shuffle the existing program out to the EEPROM while flashing the new program in. For more details, read the source.

While you might think that writing a bootloader is deep juju (it can be), [Vinod]’s simple bootloader application is written in C, using a style that should be familiar to anyone who has done work with an Arduino. It could certainly be optimized for size, but probably not for readability (and tweakability).

Why would you ever want to dual boot an Arduino? Maybe to be able to run testing and stable code on the same device? You could do the same thing over WiFi with an ESP8266. But maybe you don’t have WiFi available? Whatever, we like the hack and ‘because you can’ is a good enough excuse for us. If you do have a use in mind, post up in the comments!

Filed under: Arduino Hacks, Microcontrollers

pz1build-16_853Paint a fun and funky MIDI input device for making music on a pizza box.

Read more on MAKE

The post Making a Pizza Box MIDI Controller with Conductive Paint appeared first on Make: DIY Projects and Ideas for Makers.

Putting an full microcontroller platform in a DIP format is nothing new – the Teensy does it, the Arduino nano does it, and a dozen other boards do it. [Alex] and [Alexey] aren’t content with just a simple microcontroller breakout board so they’re adding a radio, an OLED, an SD card reader, and even more RAM to the basic Arduino platform, all in a small, easy to use package.

The DIPDuino, as [Alex] and [Alexy] are calling it features an ATmega1284 processor. To this, they’re adding a 128×32 pixel OLED, a micro SD slot, and 1Mbit of SRAM. The microcontroller is a variant that includes a 2.4 GHz Zigbee radio that allows for wireless connections to other DIPDuinos.

What are [Alex] and [Alexey] going to do with their cool little board? They’re planning on using the OLED for a watch, improve their software so the firmware can be updated from the SD card, and one of [Alex]’s friends wants to build a RepRap controller with one of these. There’s a lot of potential with this board, and we’re interested in seeing where the guys take the project from here.

Filed under: Arduino Hacks, Microcontrollers

Optimizing AVR LCD Libraries

arduino hacks, AVR, C, LCD, Microcontroller, microcontrollers, SPI, TFT, TFT Display Commenti disabilitati su Optimizing AVR LCD Libraries 

A while ago, [Paul Stoffregen], the creator of the Teensy family of microcontrollers dug into the most popular Arduino library for driving TFT LCDs. The Teensy isn’t an Arduino – it’s much faster – but [Paul]’s library does everything more efficiently.

Even when using a standard Arduino, there are still speed and efficiency gains to be made when driving a TFT. [Xark] recently released his re-mix of the Adafruit GFX library and LCD drivers. It’s several times faster than the Adafruit library, so just in case you haven’t moved on the Teensy platform yet, this is the way to use one of these repurposed cell phone displays.

After reading about [Paul]’s experience with improving the TFT library for the Teensy, [Xark] grabbed an Arduino, an LCD, and an Open Workbench Logic Sniffer to see where the inefficiencies in the Adafruit library were. These displays are driven via SPI, where the clock signal goes low for every byte shifted out over the data line. With the Adafruit library, there was a lot of wasted time in between each clock signal, and with the right code the performance could be improved dramatically.

The writeup on how [Xark] improved the code for these displays is fantastic, and the results are impressive; he can fill a screen with pixels at about 13FPS, making games that don’t redraw too much of the screen at any one time a real possibility.

Filed under: Arduino Hacks, Microcontrollers

DFRobot Encourages the Open Hardware Community

arduino, Computers & Mobile, dfrobot, Maker Faire, microcontrollers, Open source hardware, Robotics Commenti disabilitati su DFRobot Encourages the Open Hardware Community 

DFRobot's Ricky Ye with a Make: magazine editor's choice blue ribbonDFRobot is a Shanghai-based open source hardware facilitator whose mission is to encourage people to develop their own products and simply enable more rapid project creation. We caught up with Hector Saldana of DFRobot to find out more about the company’s offerings. Saldana notes one of their main focuses of […]

Read more on MAKE

The post DFRobot Encourages the Open Hardware Community appeared first on Make:.

featuredYou’ve amassed a small fortune in diamonds, wood, coal, iron, food, and the other resources you need. You’ve spent hours building the perfect Minecraft fortress to stockpile your goods. But who will watch your stash while you’re on another server? In this project guide, you’ll learn to use Arduino coding […]

Read more on MAKE

The post Minecraft Activated Arduino Alarm appeared first on Make:.

  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.