Posts | Comments

Planet Arduino

Archive for the ‘freetronics’ Category

Introduction

A few weeks ago I found a DIODER LED strip set from a long-ago trek to IKEA, and considered that something could be done with it.  So in this article you can see how easy it is to control the LEDs using an Arduino or compatible board with ease… opening it up to all sorts of possibilities.

This is not the most original project – however things have been pretty quiet around here, so I thought it was time to share something new with you. Furthermore the DIODER control PCB has changed, so this will be relevant to new purchases. Nevertheless, let’s get on with it.

So what is DIODER anyhow? 

As you can see in the image below, the DIODER pack includes four RGB LED units each with nine RGB LEDs per unit. A controller box allows power and colour choice, a distribution box connects between the controller box and the LED strips, and the whole thing is powered by a 12V DC plugpack:

IKEA DIODER LED strips

The following is a quick video showing the DIODER in action as devised by IKEA:

 

Thankfully the plugpack keeps us away from mains voltages, and includes a long detachable cable which connects to the LED strip distribution box. The first thought was to investigate the controller, and you can open it with a standard screwdriver. Carefully pry away the long-side, as two clips on each side hold it together…

IKEA DIODER Arduino tronixstuff
… which reveals the PCB. Nothing too exciting here – you can see the potentiometer used for changing the lighting effects, power and range buttons and so on:

ikea dioder tronixstuff arduino

Our DIODER has the updated PCB with the Chinese market microcontroller. If you have an older DIODER with a Microchip PIC – you can reprogram it yourself.

ikea dioder arduino tronixstuff

The following three MOSFETs are used to control the current to each of the red, green and blue LED circuits. These will be the key to controlling the DIODER’s strips – but are way too small for me to solder to. The original plan was to have an Arduino’s PWM outputs tap into the MOSFET’s gates – but instead I will use external MOSFETs.

ikea dioder arduino tronixstuff

So what’s a MOSFET?

In the past you may have used a transistor to switch higher current from an Arduino, however a MOSFET is a better solution for this function. The can control large voltages and high currents without any effort. We will use N-channel MOSFETs, which have three pins – Source, Drain and Gate. When the Gate is HIGH, current will flow into the Drain and out of the Source:

mosfet

A simplistic explanation is that it can be used like a button – and when wiring your own N-MOSFET a 10k resistor should be used between Gate and Drain to keep the Gate low when the Arduino output is set to LOW (just like de-bouncing a button). To learn more about MOSFETS – get yourself a copy of “The Art of Electronics“. It is worth every cent.

However being somewhat time poor (lazy?), I have instead used a Freetronics NDrive Shield for Arduino – which contains six N-MOSFETs all on one convenient shield  – with each MOSFET’s Gate pin connected to an Arduino PWM output.
freetronics ndrive shield tronixlabs

So let’s head back to the LED strips for a moment, in order to determine how the LEDs are wired in the strip. Thanks to the manufacturer – the PCB has the markings as shown below:

ikea dioder tronixstuff arduino

They’re 12V LEDs in a common-anode configuration. How much current do they draw? Depends on how many strips you have connected together…

ikea dioder arduino tronixstuff

For the curious I measured each colour at each length, with the results in the following table:

current

So all four strips turned on, with all colours on – the strips will draw around 165 mA of current at 12V. Those blue LEDs are certainly thirsty.

Moving on, the next step is to connect the strips to the MOSFET shield. This is easy thanks to the cable included in the DIODER pack, just chop the white connector off as shown below:

ikea dioder arduino tronixstuff

By connecting an LED strip to the other end of the cable you can then determine which wire is common, and which are the cathodes for red, green and blue.

The plugpack included with the DIODER pack can be used to power the entire project, so you will need cut the DC plug (the plug that connects into the DIODER’s distribution box) off the lead, and use a multimeter to determine which wire is negative, and which is positive.

Connect the negative wire to the GND terminal on the shield, and the positive wire to the Vin terminal.  Then…

  • the red LED wire to the D3 terminal,
  • the green LED wire to the D9 terminal,
  • and the blue LED wire to the D10 terminal.

Finally, connect the 12V LED wire (anode) into the Vin terminal. Now double-check your wiring. Then check it again.

ikea dioder tronixstuff arduino

Testing

Now to run a test sketch to show the LED strip can easily be controlled. We’ll turn each colour on and off using PWM (Pulse-Width Modulation) – a neat way to control the brightness of each colour. The following sketch will pulse each colour in turn, and there’s also a blink function you can use.

// Controlling IKEA DIODER LED strips with Arduino and Freetronics NDRIVE N-MOSFET shield
// CC by-sa-nc John Boxall 2015 - tronixstuff.com 
// Components from tronixlabs.com

#define red 3
#define green 9
#define blue 10
#define delaya 2

void setup() 
{
  pinMode(red, OUTPUT);
  pinMode(green, OUTPUT);
  pinMode(blue, OUTPUT);
}

void blinkRGB()
{
  digitalWrite(red, HIGH);
  delay(1000);
  digitalWrite(red, LOW);
  digitalWrite(green, HIGH);
  delay(1000);
  digitalWrite(green, LOW);
  digitalWrite(blue, HIGH);
  delay(1000);
  digitalWrite(blue, LOW);
}

void pulseRed()
{
  for (int i=0; i<256; i++)
  {
    analogWrite(red,i);
    delay(delaya);
  }
  for (int i=255; i>=0; --i)
  {
    analogWrite(red,i);
    delay(delaya);
  }
}

void pulseGreen()
{
  for (int i=0; i<256; i++)
  {
    analogWrite(green,i);
    delay(delaya);
  }
  for (int i=255; i>=0; --i)
  {
    analogWrite(green,i);
    delay(delaya);
  }
}

void pulseBlue()
{
  for (int i=0; i<256; i++)
  {
    analogWrite(blue,i);
    delay(delaya);
  }
  for (int i=255; i>=0; --i)
  {
    analogWrite(blue,i);
    delay(delaya);
  }
}

void loop()
{
  pulseRed();
  pulseGreen();
  pulseBlue();
}

Success. And for the non-believers, watch the following video:

Better LED control

As always, there’s a better way of doing things and one example of LED control is the awesome FASTLED library by Daniel Garcia and others. Go and download it now – https://github.com/FastLED/FastLED. Apart from our simple LEDS, the FASTLED library is also great with WS2812B/Adafruit NeoPixels and others.

One excellent demonstration included with the library is the AnalogOutput sketch, which I have supplied below to work with our example hardware:

#include <FastLED.h>

// Example showing how to use FastLED color functions
// even when you're NOT using a "pixel-addressible" smart LED strip.
//
// This example is designed to control an "analog" RGB LED strip
// (or a single RGB LED) being driven by Arduino PWM output pins.
// So this code never calls FastLED.addLEDs() or FastLED.show().
//
// This example illustrates one way you can use just the portions 
// of FastLED that you need.  In this case, this code uses just the
// fast HSV color conversion code.
// 
// In this example, the RGB values are output on three separate
// 'analog' PWM pins, one for red, one for green, and one for blue.
 
#define REDPIN   3
#define GREENPIN 9
#define BLUEPIN  10

// showAnalogRGB: this is like FastLED.show(), but outputs on 
// analog PWM output pins instead of sending data to an intelligent,
// pixel-addressable LED strip.
// 
// This function takes the incoming RGB values and outputs the values
// on three analog PWM output pins to the r, g, and b values respectively.
void showAnalogRGB( const CRGB& rgb)
{
  analogWrite(REDPIN,   rgb.r );
  analogWrite(GREENPIN, rgb.g );
  analogWrite(BLUEPIN,  rgb.b );
}



// colorBars: flashes Red, then Green, then Blue, then Black.
// Helpful for diagnosing if you've mis-wired which is which.
void colorBars()
{
  showAnalogRGB( CRGB::Red );   delay(500);
  showAnalogRGB( CRGB::Green ); delay(500);
  showAnalogRGB( CRGB::Blue );  delay(500);
  showAnalogRGB( CRGB::Black ); delay(500);
}

void loop() 
{
  static uint8_t hue;
  hue = hue + 1;
  // Use FastLED automatic HSV->RGB conversion
  showAnalogRGB( CHSV( hue, 255, 255) );
  
  delay(20);
}


void setup() {
  pinMode(REDPIN,   OUTPUT);
  pinMode(GREENPIN, OUTPUT);
  pinMode(BLUEPIN,  OUTPUT);

  // Flash the "hello" color sequence: R, G, B, black.
  colorBars();
}

You can see this in action through the following video:

Control using a mobile phone?

Yes – click here to learn how.

Conclusion

So if you have some IKEA LED strips, or anything else that requires more current than an Arduino’s output pin can offer – you can use MOSFETs to take over the current control and have fun. And finally a plug for my own store – tronixlabs.com – offering a growing range and Australia’s best value for supported hobbyist electronics from adafruit, DFRobot, Freetronics, Seeed Studio and much much more.

visit tronixlabs.com

As always, have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website.

Learn how to connect your Arduino to the outside world via Ethernet

This is chapter sixteen of our huge Arduino tutorial seriesUpdated 06/12/2013

In this chapter we will introduce and examine the use of Ethernet networking with Arduino over local networks and the greater Internet. It will be assumed that you have a basic understanding of computer networking, such as the knowledge of how to connect computers to a hub/router with RJ45 cables, what an IP and MAC address is, and so on. Furthermore, here is a good quick rundown about Ethernet.

Getting Started

You will need an Arduino Uno or compatible board with an Ethernet shield that uses the W5100 Ethernet controller IC (pretty much all of them):

Arduino Ethernet shield

…or consider using a Freetronics EtherTen – as it has everything all on the one board, plus some extras:

Freetronics EtherTen

Furthermore you will need to power the board via the external DC socket – the W5100 IC uses more current than the USB power can supply. A 9V 1A plug pack/wall wart will suffice. Finally it does get hot – so be careful not to touch the W5100 after extended use. In case you’re not sure – this is the W5100 IC:

Wiznet W5100

Once you have your Ethernet-enabled Arduino, and have the external power connected – it’s a good idea to check it all works. Open the Arduino IDE and selectFile > Examples > Ethernet > Webserver. This loads a simple sketch which will display data gathered from the analogue inputs on a web browser. However don’t upload it yet, it needs a slight modification.

You need to specify the IP address of the Ethernet shield – which is done inside the sketch. This is simple, go to the line:

IPAddress ip(192,168,1, 177);

And alter it to match your own setup. For example, in my home the router’s IP address is 10.1.1.1, the printer is 10.1.1.50 and all PCs are below …50. So I will set my shield IP to 10.1.1.77 by altering the line to:

IPAddress ip(10,1,1,77);

You also have the opportunity to change your MAC address. Each piece of networking equipment has a unique serial number to identify itself over a network, and this is normall hard-programmed into the equipments’ firmware. However with Arduino we can define the MAC address ourselves.

If you are running more than one Ethernet shield on your network, ensure they have different MAC addresses by altering the hexadecimal values in the line:

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

However if you only have one shield just leave it be. There may be the very, very, statistically rare chance of having a MAC address the same as your existing hardware, so that would be another time to change it.

Once you have made your alterations, save and upload the sketch. Now open a web browser and navigate to the IP address you entered in the sketch, and you should be presented with something similar to the following:

 Arduino webserver example sketch

What’s happening? The Arduino has been programmed to offer a simple web page with the values measured by the analogue inputs. You can refresh the browser to get updated values.

At this point – please note that the Ethernet shields use digital pins 10~13, so you can’t use those for anything else. Some Arduino Ethernet shields may also have a microSD card socket, which also uses another digital pin – so check with the documentation to find out which one.

Nevertheless, now that we can see the Ethernet shield is working we can move on to something more useful. Let’s dissect the previous example in a simple way, and see how we can distribute and display more interesting data over the network. For reference, all of the Ethernet-related functions are handled by the Ethernet Arduino library. If you examine the previous sketch we just used, the section that will be of interest is:

 for (int analogChannel = 0; analogChannel < 6; analogChannel++) 
          {
            int sensorReading = analogRead(analogChannel);
            client.print("analog input ");
            client.print(analogChannel);
            client.print(" is ");
            client.print(sensorReading);
            client.println("<br />");       
          }
          client.println("</html>");

Hopefully this section of the sketch should be familiar – remember how we have used serial.print(); in the past when sending data to the serial monitor box? Well now we can do the same thing, but sending data from our Ethernet shield back to a web browser – on other words, a very basic type of web page.

However there is something you may or may not want to  learn in order to format the output in a readable format – HTML code. I am not a website developer (!) so will not delve into HTML too much.

However if you wish to serve up nicely formatted web pages with your Arduino and so on, here would be a good start. In the interests of simplicity, the following two functions will be the most useful:

client.print(" is ");

Client.print (); allows us to send text or data back to the web page. It works in the same way as serial.print(), so nothing new there. You can also specify the data type in the same way as with serial.print(). Naturally you can also use it to send data back as well. The other useful line is:

client.println("<br />");

which sends the HTML code back to the web browser telling it to start a new line. The part that actually causes the carriage return/new line is the <br /> which is an HTML code (or “tag”) for a new line. So if you are creating more elaborate web page displays, you can just insert other HTML tags in the client.print(); statement. If you want to learn more about HTML commands, here’s a good tutorial site. Finally – note that the sketch will only send the data when it has been requested, that is when it has received a request from the web browser.

Accessing your Arduino over the Internet

So far – so good. But what if you want to access your Arduino from outside the local network?

You will need a static IP address – that is, the IP address your internet service provider assigns to your connection needs to stay the same. If you don’t have a static IP, as long as you leave your modem/router permanently swiched on your IP shouldn’t change. However that isn’t an optimal solution.

If your ISP cannot offer you a static IP at all, you can still move forward with the project by using an organisation that offers a Dynamic DNS. These organisations offer you your own static IP host name (e.g. mojo.monkeynuts.com) instead of a number, keep track of your changing IP address and linking it to the new host name. From what I can gather, your modem needs to support (have an in-built client for…) these DDNS services. As an example, two companies are No-IP andDynDNS.com. Please note that I haven’t used those two, they are just offered as examples.

Now, to find your IP address… usually this can be found by logging into your router’s administration page – it is usually 192.168.0.1 but could be different. Check with your supplier or ISP if they supplied the hardware. For this example, if I enter 10.1.1.1 in a web browser, and after entering my modem administration password, the following screen is presented:

WAN IP address router

What you are looking for is your WAN IP address, as you can see in the image above. To keep the pranksters away, I have blacked out some of my address.

The next thing to do is turn on port-forwarding. This tells the router where to redirect incoming requests from the outside world. When the modem receives such a request, we want to send that request to the port number of our Ethernet shield. Using the:

EthernetServer server(125);

function in our sketch has set the port number to 125. Each modem’s configuration screen will look different, but as an example here is one:

Arduino router port forwarding

So you can see from the line number one in the image above, the inbound port numbers have been set to 125, and the IP address of the Ethernet shield has been set to 10.1.1.77 – the same as in the sketch.

After saving the settings, we’re all set. The external address of my Ethernet shield will be the WAN:125, so to access the Arduino I will type my WAN address with :125 at the end into the browser of the remote web device, which will contact the lonely Ethernet hardware back home.

Furthermore, you may need to alter your modem’s firewall settings, to allow the port 125 to be “open” to incoming requests. Please check your modem documentation for more information on how to do this.

Now from basically any Internet connected device in the free world, I can enter my WAN and port number into the URL field and receive the results. For example, from a phone when it is connected to the Internet via LTE mobile data:

Arduino webserver example cellular

So at this stage you can now display data on a simple web page created by your Arduino and access it from anywhere with unrestricted Internet access. With your previous Arduino knowledge (well, this is chapter sixteen) you can now use data from sensors or other parts of a sketch and display it for retrieval.

Displaying sensor data on a web page

As an example of displaying sensor data on a web page, let’s use an inexpensive and popular temperature and humidity sensor – the DHT22. You will need to install the DHT22 Arduino library which can be found on this page. If this is your first time with the DHT22, experiment with the example sketch that’s included with the library so you understand how it works.

Connect the DHT22 with the data pin to Arduino D2, Vin to the 5V pin and GND to … GND:

arduino ethernet freetronics etherten dht22 humid

Now for our sketch – to display the temperature and humidity on a web page. If you’re not up on HTML you can use online services such as this to generate the code, which you can then modify to use in the sketch.

In the example below, the temperature and humidity data from the DHT22 is served in a simple web page:

#include <SPI.h>
#include <Ethernet.h>

// for DHT22 sensor
#include "DHT.h"
#define DHTPIN 2
#define DHTTYPE DHT22

// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network:
byte mac[] = {   0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(10,1,1,77);

// Initialize the Ethernet server library
// with the IP address and port you want to use 
// (port 80 is default for HTTP):
EthernetServer server(125);
DHT dht(DHTPIN, DHTTYPE);

void setup() 
{
  dht.begin();
 // Open serial communications and wait for port to open:
  Serial.begin(9600);
   while (!Serial) {
    ; // wait for serial port to connect. Needed for Leonardo only
  }
  // start the Ethernet connection and the server:
  Ethernet.begin(mac, ip);
  server.begin();
  Serial.print("server is at ");
  Serial.println(Ethernet.localIP());
}

void loop() 
{
  // listen for incoming clients
  EthernetClient client = server.available();
  if (client) {
    Serial.println("new client");
    // an http request ends with a blank line
    boolean currentLineIsBlank = true;
    while (client.connected()) {
      if (client.available()) {
        char c = client.read();
        Serial.write(c);
        // if you've gotten to the end of the line (received a newline
        // character) and the line is blank, the http request has ended,
        // so you can send a reply
        if (c == 'n' && currentLineIsBlank) 
        {
          // send a standard http response header
          client.println("HTTP/1.1 200 OK");
          client.println("Content-Type: text/html");
          client.println("Connection: close");  // the connection will be closed after completion of the response
	  client.println("Refresh: 30");  // refresh the page automatically every 30 sec
          client.println();
          client.println("<!DOCTYPE HTML>");
          client.println("<html>");

          // get data from DHT22 sensor
          float h = dht.readHumidity();
          float t = dht.readTemperature();
          Serial.println(t);
          Serial.println(h);

          // from here we can enter our own HTML code to create the web page
          client.print("<head><title>Office Weather</title></head><body><h1>Office Temperature</h1><p>Temperature - ");
          client.print(t);
          client.print(" degrees Celsius</p>");
          client.print("<p>Humidity - ");
          client.print(h);
          client.print(" percent</p>");
          client.print("<p><em>Page refreshes every 30 seconds.</em></p></body></html>");
          break;
        }
        if (c == 'n') {
          // you're starting a new line
          currentLineIsBlank = true;
        } 
        else if (c != 'r') {
          // you've gotten a character on the current line
          currentLineIsBlank = false;
        }
      }
    }
    // give the web browser time to receive the data
    delay(1);
    // close the connection:
    client.stop();
    Serial.println("client disonnected");
  }
}

It is a modification of the IDE’s webserver example sketch that we used previously – with a few modifications. First, the webpage will automatically refresh every 30 seconds – this parameter is set in the line:

client.println("Refresh: 30");  // refresh the page automatically every 30 sec

… and the custom HTML for our web page starts below the line:

// from here we can enter our own HTML code to create the web page

You can then simply insert the required HTML inside client.print() functions to create the layout you need.

Finally – here’s an example screen shot of the example sketch at work:

arduino ethernet freetronics etherten dht22 humid cellular

You now have the framework to create your own web pages that can display various data processed with your Arduino.

Remote control your Arduino from afar

We have a separate tutorial on this topic, that uses the teleduino system.

Conclusion

So there you have it, another useful way to have your Arduino interact with the outside world. Stay tuned for upcoming Arduino tutorials by subscribing to the blog, RSS feed (top-right), twitter or joining our Google Group. And if you enjoyed the tutorial, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a third printing!) “Arduino Workshop” from No Starch Press.

tronixstuff

Introduction

A few weeks ago I was asked about creating a musical-effect display with an RGB LED cube kit from our friends over at Freetronics, and with a little work this was certainly possible using the MSGEQ7 spectrum analyzer IC. In this project we’ll create a small add-on PCB containing the spectrum analyzer circuit and show how it can drive the RGB LED cube kit.

Freetronics CUBE4 RGB LED cube kit

Assumed knowledge

To save repeating myself, please familiarise yourself with the MSGEQ7 spectrum analyzer IC in Chapter 48 of our Arduino tutorials. And learn more about the LED cube from our review and the product page.

You can get the bare MSGEQ7 ICs from Sparkfun and the other usual suspects. It never hurts to have a spare one, so order two and matching IC sockets. Finally you should be able to translate a simple circuit to prototyping board.

The circuit

The LED cube already has an Arduino Leonardo-compatible built in to the main PCB, so all you need to do is build a small circuit that contains the spectrum analyzer which connects to the I/O pins on the cube PCB and also has audio input and output connections. First, consider the schematic:

MSGEQ7 CUBE4 spectrum analyser schematic

For the purposes of this project our spectrum analyzer will only display the results from one channel of audio – if you want stereo, you’ll need two! And note that the strobe, reset and DCOUT pins on the MSGEQ7 are labelled with the connections to the cube PCB. Furthermore the pinouts for the MSGEQ7 don’t match the physical reality – here are the pinouts from the MSGEQ7 data sheet (.pdf):

MSGEQ7 pinouts

The circuit itself will be quite small and fit on a small amount of stripboard or veroboard. There is plenty of room underneath the cube to fit the circuit if so desired:

MSGEQ7 LED cube

With a few moments you should be able to trace out your circuit to match the board type you have, remember to double-check before soldering. You will also need to connect the audio in point after the 1000 pF capacitor to a source of audio, and also pass it through so you can connect powered speakers, headphones, etc.

One method of doing so would be to cut up a male-female audio extension lead, and connect the shield to the GND of the circuit, and the signal line to the audio input on the circuit. Or if you have the parts handy and some shielded cable, just make your own input and output leads:

MSGEQ7 input output leads

Be sure to test for shorts between the signal and shield before soldering to the circuit board. When finished, you should have something neat that you can hide under the cube or elsewhere:

MSGEQ7 RGB cube LED spectrum analyzer board

Double-check your soldering for shorts and your board plan, then fit to the cube along with the audio source and speakers (etc).

Arduino Sketch

The sketch has two main functions – the first is to capture the levels from the MSGEQ7 and put the values for each frequency band into an array, and the second function is to turn on LEDs that represent the level for each band. If you’ve been paying attention you may be wondering how we can represent seven frequency bands with a 4x4x4 LED cube. Simple – by rotating the cube 45 degrees you can see seven vertical columns of LEDs:

MSGEQ7 LED cube spectrum analyzer columns

So when looking from the angle as shown above, you have seven vertical columns, each with four levels of LEDs. Thus the strength of each frequency can be broken down into four levels, and then the appropriate LEDs turned on.

After this is done for each band, all the LEDs are turned off and the process repeats. For the sake of simplicity I’ve used the cube’s Arduino library to activate the LEDs, which also makes the sketch easier to fathom. The first example sketch only uses one colour:

// Freetronics CUBE4: and MSGEQ7 spectrum analyser
// MSGEQ7 strobe on A4, reset on D5, signal into A0

#include "SPI.h"
#include "Cube.h"
Cube cube;

int res = 5; // reset pins on D5
int left[7]; // store band values in these arrays
int band;

void setup()
{
  pinMode(res, OUTPUT); // reset
  pinMode(A4, OUTPUT); // strobe
  digitalWrite(res,LOW); 
  digitalWrite(A4,HIGH); 
  cube.begin(-1, 115200);
  Serial.begin(9600);
}

void readMSGEQ7()
// Function to read 7 band equalizers
{
  digitalWrite(res, HIGH);
  digitalWrite(res, LOW);
  for(band=0; band <7; band++)
  {
    digitalWrite(A4,LOW); // strobe pin on the shield - kicks the IC up to the next band 
    delayMicroseconds(30); // 
    left[band] = analogRead(0); // store band reading
    digitalWrite(A4,HIGH); 
  }
}

void loop()
{
  readMSGEQ7();

  for (band = 0; band < 7; band++)
  {
    // div each band strength into four layers, each band then one of the odd diagonals 

    // band one ~ 63 Hz
    if (left[0]>=768) { 
      cube.set(3,3,3, BLUE); 
    } 
    else       
      if (left[0]>=512) { 
      cube.set(3,3,2, BLUE); 
    } 
    else   
      if (left[0]>=256) { 
      cube.set(3,3,1, BLUE); 
    } 
    else       
      if (left[0]>=0) { 
      cube.set(3,3,0, BLUE); 
    } 

    // band two ~ 160 Hz
    if (left[1]>=768) 
    { 
      cube.set(3,2,3, BLUE); 
      cube.set(2,3,3, BLUE);      
    }  
    else
      if (left[1]>=512) 
      { 
        cube.set(3,2,2, BLUE); 
        cube.set(2,3,2, BLUE);      
      } 
      else   
        if (left[1]>=256) 
      { 
        cube.set(3,2,1, BLUE); 
        cube.set(2,3,1, BLUE);      
      } 
      else   
        if (left[1]>=0) 
      { 
        cube.set(3,2,0, BLUE); 
        cube.set(2,3,0, BLUE);      
      } 

    // band three ~ 400 Hz
    if (left[2]>=768) 
    { 
      cube.set(3,1,3, BLUE); 
      cube.set(2,2,3, BLUE);      
      cube.set(1,3,3, BLUE);            
    }  
    else
      if (left[2]>=512) 
      { 
        cube.set(3,1,2, BLUE); 
        cube.set(2,2,2, BLUE);      
        cube.set(1,3,2, BLUE);            
      } 
      else   
        if (left[2]>=256) 
      { 
        cube.set(3,1,1, BLUE); 
        cube.set(2,2,1, BLUE);      
        cube.set(1,3,1, BLUE);            
      } 
      else   
        if (left[2]>=0) 
      { 
        cube.set(3,1,0, BLUE); 
        cube.set(2,2,0, BLUE);      
        cube.set(1,3,0, BLUE);            
      } 

    // band four ~ 1 kHz
    if (left[3]>=768) 
    { 
      cube.set(3,0,3, BLUE); 
      cube.set(2,1,3, BLUE);      
      cube.set(1,2,3, BLUE);            
      cube.set(0,3,3, BLUE);                  
    }  
    else
      if (left[3]>=512) 
      { 
        cube.set(3,0,2, BLUE); 
        cube.set(2,1,2, BLUE);      
        cube.set(1,2,2, BLUE);            
        cube.set(0,3,2, BLUE);                        
      } 
      else   
        if (left[3]>=256) 
      { 
        cube.set(3,0,1, BLUE); 
        cube.set(2,1,1, BLUE);      
        cube.set(1,2,1, BLUE);      
        cube.set(0,3,1, BLUE);                        
      } 
      else   
        if (left[3]>=0) 
      { 
        cube.set(3,0,0, BLUE); 
        cube.set(2,1,0, BLUE);      
        cube.set(1,2,0, BLUE);            
        cube.set(0,3,0, BLUE);                        
      } 

    // band five  ~ 2.5 kHz
    if (left[4]>=768) 
    { 
      cube.set(2,0,3, BLUE); 
      cube.set(1,1,3, BLUE);      
      cube.set(0,2,3, BLUE);            
    }  
    else
      if (left[4]>=512) 
      { 
        cube.set(2,0,2, BLUE); 
        cube.set(1,1,2, BLUE);      
        cube.set(0,2,2, BLUE);            
      } 
      else   
        if (left[4]>=256) 
      { 
        cube.set(2,0,1, BLUE); 
        cube.set(1,1,1, BLUE);      
        cube.set(0,2,1, BLUE);      
      } 
      else   
        if (left[4]>=0) 
      { 
        cube.set(2,0,0, BLUE); 
        cube.set(1,1,0, BLUE);      
        cube.set(0,2,0, BLUE);            
      } 

    // band six   ~ 6.25 kHz
    if (left[5]>=768) 
    { 
      cube.set(1,0,3, BLUE); 
      cube.set(0,1,3, BLUE);      
    }  
    else
      if (left[5]>=512) 
      { 
        cube.set(1,0,2, BLUE); 
        cube.set(0,1,2, BLUE);      
      } 
      else   
        if (left[5]>=256) 
      { 
        cube.set(1,0,1, BLUE); 
        cube.set(0,1,1, BLUE);      
      } 
      else   
        if (left[5]>=0) 
      { 
        cube.set(1,0,0, BLUE); 
        cube.set(0,1,0, BLUE);      
      } 

    // band seven  ~ 16 kHz
    if (left[6]>=768) 
    { 
      cube.set(0,0,3, BLUE); 
    }  
    else
      if (left[6]>=512) 
      { 
        cube.set(0,0,2, BLUE); 
      } 
      else   
        if (left[6]>=256) 
      { 
        cube.set(0,0,1, BLUE); 
      } 
      else   
        if (left[6]>=0) 
      { 
        cube.set(0,0,0, BLUE); 
      } 
  }
  // now clear the CUBE, or if that's too slow - repeat the process but turn LEDs off
  cube.all(BLACK);
}

… and a quick video demonstration:

For a second example, we’ve used various colours:

// Freetronics CUBE4: and MSGEQ7 spectrum analyser
// MSGEQ7 strobe on A4, reset on D5, signal into A0
// now in colour!

#include "SPI.h"
#include "Cube.h"
Cube cube;

int res = 5; // reset pins on D5
int left[7]; // store band values in these arrays
int band;
int additional=0;

void setup()
{
  pinMode(res, OUTPUT); // reset
  pinMode(A4, OUTPUT); // strobe
  digitalWrite(res,LOW); 
  digitalWrite(A4,HIGH); 
  cube.begin(-1, 115200);
  Serial.begin(9600);
}

void readMSGEQ7()
// Function to read 7 band equalizers
{
  digitalWrite(res, HIGH);
  digitalWrite(res, LOW);
  for(band=0; band <7; band++)
  {
    digitalWrite(A4,LOW); // strobe pin on the shield - kicks the IC up to the next band 
    delayMicroseconds(30); // 
    left[band] = analogRead(0) + additional; // store band reading
    digitalWrite(A4,HIGH); 
  }
}

void loop()
{
  readMSGEQ7();

  for (band = 0; band < 7; band++)
  {
    // div each band strength into four layers, each band then one of the odd diagonals 

    // band one ~ 63 Hz
    if (left[0]>=768) { 
      cube.set(3,3,3, RED); 
    } 
    else       
      if (left[0]>=512) { 
      cube.set(3,3,2, YELLOW); 
    } 
    else   
      if (left[0]>=256) { 
      cube.set(3,3,1, YELLOW); 
    } 
    else       
      if (left[0]>=0) { 
      cube.set(3,3,0, BLUE); 
    } 

    // band two ~ 160 Hz
    if (left[1]>=768) 
    { 
      cube.set(3,2,3, RED); 
      cube.set(2,3,3, RED);      
    }  
    else
      if (left[1]>=512) 
      { 
        cube.set(3,2,2, YELLOW); 
        cube.set(2,3,2, YELLOW);      
      } 
      else   
        if (left[1]>=256) 
      { 
        cube.set(3,2,1, YELLOW); 
        cube.set(2,3,1, YELLOW);      
      } 
      else   
        if (left[1]>=0) 
      { 
        cube.set(3,2,0, BLUE); 
        cube.set(2,3,0, BLUE);      
      } 

    // band three ~ 400 Hz
    if (left[2]>=768) 
    { 
      cube.set(3,1,3, RED); 
      cube.set(2,2,3, RED);      
      cube.set(1,3,3, RED);            
    }  
    else
      if (left[2]>=512) 
      { 
        cube.set(3,1,2, YELLOW); 
        cube.set(2,2,2, YELLOW);      
        cube.set(1,3,2, YELLOW);            
      } 
      else   
        if (left[2]>=256) 
      { 
        cube.set(3,1,1, YELLOW); 
        cube.set(2,2,1, YELLOW);      
        cube.set(1,3,1, YELLOW);            
      } 
      else   
        if (left[2]>=0) 
      { 
        cube.set(3,1,0, BLUE); 
        cube.set(2,2,0, BLUE);      
        cube.set(1,3,0, BLUE);            
      } 

    // band four ~ 1 kHz
    if (left[3]>=768) 
    { 
      cube.set(3,0,3, RED); 
      cube.set(2,1,3, RED);      
      cube.set(1,2,3, RED);            
      cube.set(0,3,3, RED);                  
    }  
    else
      if (left[3]>=512) 
      { 
        cube.set(3,0,2, YELLOW); 
        cube.set(2,1,2, YELLOW);      
        cube.set(1,2,2, YELLOW);            
        cube.set(0,3,2, YELLOW);                        
      } 
      else   
        if (left[3]>=256) 
      { 
        cube.set(3,0,1, YELLOW); 
        cube.set(2,1,1, YELLOW);      
        cube.set(1,2,1, YELLOW);      
        cube.set(0,3,1, YELLOW);                        
      } 
      else   
        if (left[3]>=0) 
      { 
        cube.set(3,0,0, BLUE); 
        cube.set(2,1,0, BLUE);      
        cube.set(1,2,0, BLUE);            
        cube.set(0,3,0, BLUE);                        
      } 

    // band five  ~ 2.5 kHz
    if (left[4]>=768) 
    { 
      cube.set(2,0,3, RED); 
      cube.set(1,1,3, RED);      
      cube.set(0,2,3, RED);            
    }  
    else
      if (left[4]>=512) 
      { 
        cube.set(2,0,2, YELLOW); 
        cube.set(1,1,2, YELLOW);      
        cube.set(0,2,2, YELLOW);            
      } 
      else   
        if (left[4]>=256) 
      { 
        cube.set(2,0,1, YELLOW); 
        cube.set(1,1,1, YELLOW);      
        cube.set(0,2,1, YELLOW);      
      } 
      else   
        if (left[4]>=0) 
      { 
        cube.set(2,0,0, BLUE); 
        cube.set(1,1,0, BLUE);      
        cube.set(0,2,0, BLUE);            
      } 

    // band six   ~ 6.25 kHz
    if (left[5]>=768) 
    { 
      cube.set(1,0,3, RED); 
      cube.set(0,1,3, RED);      
    }  
    else
      if (left[5]>=512) 
      { 
        cube.set(1,0,2, YELLOW); 
        cube.set(0,1,2, YELLOW);      
      } 
      else   
        if (left[5]>=256) 
      { 
        cube.set(1,0,1, YELLOW); 
        cube.set(0,1,1, YELLOW);      
      } 
      else   
        if (left[5]>=0) 
      { 
        cube.set(1,0,0, BLUE); 
        cube.set(0,1,0, BLUE);      
      } 

    // band seven  ~ 16 kHz
    if (left[6]>=768) 
    { 
      cube.set(0,0,3, RED); 
    }  
    else
      if (left[6]>=512) 
      { 
        cube.set(0,0,2, YELLOW); 
      } 
      else   
        if (left[6]>=256) 
      { 
        cube.set(0,0,1, YELLOW); 
      } 
      else   
        if (left[6]>=0) 
      { 
        cube.set(0,0,0, BLUE); 
      } 
  }
  // now clear the CUBE, or if that's too slow - repeat the process but turn LEDs off
  cube.all(BLACK);
}

… and the second video demonstration:

A little bit of noise comes through into the spectrum analyzer, most likely due to the fact that the entire thing is unshielded. The previous prototype used the Arduino shield from the tutorial which didn’t have this problem, so if you’re keen perhaps make your own custom PCB for this project.

Conclusion

Well that was something different and I hope you enjoyed it, and can find use for the circuit. That MSGEQ7 is a handy IC and with some imagination you can create a variety of musically-influenced displays. And while you’re here – are you interested in learning more about Arduino? Then order my new book “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

The post Project – LED Cube Spectrum Analyzer appeared first on tronixstuff.

Oct
24

Freetronics OLED Display Competition Winner

competition, freetronics, tronixstuff Comments Off on Freetronics OLED Display Competition Winner 

In September we published a review of the new Freetronics OLED Display module for Arduino and Raspberry Pi, and inside that review was the details for a simple competition – send in a postcard to go in the draw for a free OLED display. Today marks the end of the competition, so we’ve put all the cards in a box, shuffled them around a bit and selected one winner:

postcard_OLED_winner

Congratulations to Jorge from Portugal. Thanks to all those who entered, and for the curious here are the submitted cards:

postcards_OLED_all

Personally I’d like to thank all those who enjoyed the spirit of the competition and sent in a card, and of course Freetronics for the OLED Display:

freetronics OLED

We hope to run more competitions in the future and also offer product discounts for our readers – so be sure to read all of a post when they appear. And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

 

The post Freetronics OLED Display Competition Winner appeared first on tronixstuff.

Sep
25

Review – Freetronics 128×128 Pixel Colour OLED Module

arduino, color, display, freetronics, LCD, OLED, product review, Raspberry Pi, review, tronixstuff, tutorial Comments Off on Review – Freetronics 128×128 Pixel Colour OLED Module 

Introduction

Time for another review, and in this instalment we have the new 128×128 Pixel OLED Module from Freetronics. It’s been a while since we’ve had a full-colour graphic display to experiment with, and this one doesn’t disappoint. Unlike other displays such as LCD, this one uses OLED – “Organic Light-Emitting Diode” technology.

OLEDs allow for a faster refresh rate, and to the naked eye has a great amount of colour contrast. Furthermore the viewing angles are excellent, you can clearly read the display from almost any angle, for example:

freetronics OLED display bottom view

freetronics OLED display side

However they can suffer from burn-in from extended display of the same thing so that does need to be taken into account. Nevertheless they provide an inexpensive and easy-to-use method of displaying colour text, graphics and even video from a variety of development boards. Finally – there is also a microSD socket for data logging, image storage or other uses. However back to the review unit. It arrives in typical retail packaging:

freetronics OLED display

and includes the OLED display itself, a nifty reusable parts tray/storage box, and two buttons. The display has a resolution of 128 x 128 pixels and has a square display area with a diagonal size of 38.1 mm. The unit itself is quite compact:

freetronics OLED display front

freetronics_OLED_display_rear

The display is easily mounted using the holes on the left and right-hand side of the display. The designers have also allowed space for an LED, current-limiting resistor and button on each side, for user input or gaming – perfect for the  included buttons. However this section of the PCB is also scored-off so you can remove them if required. Using the OLED isn’t difficult, and tutorials have been provided for both Arduino and Raspberry Pi users.

Using with Arduino

After installing the Arduino library, it’s a simple matter of running some jumper wires from the Arduino or compatible board to the display – explained in detail with the “Quickstart” guide. Normally I would would explain how to use the display myself, however in this instance a full guide has been published which explains how to display text of various colours, graphics, displaying images stored on a microSD card and more. Finally there’s some interesting demonstration sketches included with the library. For example, displaying large amounts of text:

… the variety of fonts available:

freetronics OLED font demonstration

… and for those interested in monitoring changing data types, a very neat ECG-style of sketch:

… and the mandatory rotating cube from a Freetronics forum member:

Using with Raspberry Pi

For users of this popular single-board computer, there’s a great tutorial and some example videos available on the Freetronics website for your consideration, such as the following video clip playback:

Support

Along with the Arduino and Raspberry Pi tutorials, there’s also the Freetronics support forum where members have been experimenting with accelerated drivers, demonstrations and more.

Competition!

For a chance to win your own OLED display, send a postcard with your email address clearly printed on the back to:

OLED Competition, PO Box 5435 Clayton 3168 Australia. 

Cards must be received by 24/10/2013. One card will then be selected at random and the winner will be sent one Freetronics OLED Display. Prize will be delivered by Australia Post standard air mail. We’re not responsible for customs or import duties, VAT, GST, import duty, postage delays, non-delivery or whatever walls your country puts up against receiving inbound mail.

Conclusion

Compared to previous colour LCD units used in the past, OLED technology is a great improvement – and demonstrated very well with this unit. Furthermore you get the whole package – anyone call sell you a display, however Freetronics also have the support, tutorials, drivers and backup missing from other retailers. So if you need a colour display, check it out.

And for more detail, full-sized images from this article can be found on flickr. And if you’re interested in learning more about Arduino, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a third printing!) “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

[Note - OLED display was a promotional consideration from Freetronics]

The post Review – Freetronics 128×128 Pixel Colour OLED Module appeared first on tronixstuff.

Aug
28

Initial Review – Goldilocks Arduino-compatible with ATmega1284P

arduino, atmega1284p, atmel, board, compatible, freetronics, goldilocks, part review, review, tronixstuff Comments Off on Initial Review – Goldilocks Arduino-compatible with ATmega1284P 

Introduction

In March this year we discussed a project by Phillip Stevens to crowd-fund an Arduino-compatible board with an ATmega1284p microcontroller – the “Goldilocks”. After being funded at a rapid rate, and subjected to some community feedback – the boards have now been manufactured and delivered to those who pledged. If you missed out – there’s some more available for direct sales. We ordered five and now have them for the subject of this review – and two to give away. So let’s examine the board and see what’s new.

What is it?

After hitting the limits of the Arduino Uno with respect to SRAM, CPU speed and not wanting to lose compatibility with existing projects by changing platforms, Philip decided to shift the MCU up to the ATmega1284P. This offers eight times the SRAM, four times the flash memory and EEPROM – and is also clocked at 20 MHz instead of the usual 16 MHz on Unos, etc. After the original design was announced, it was the victim of some pretty heavy feature-creep – however with Freetronics as the manufacturing partner the final result is a nicely-finished product:

freetronics goldilocks

Now let’s rip open the packaging and examine the board in greater detail. From the images below you can get the gist of things… starting with the top you can see the ATmega1284P next to the microSD card socket. There’s a JTAG connector for the 1284P on its left – and below that a 32.768 kHz crystal for RTC use. And like other Freetronics boards a large prototyping area has been squeezed in below pins D0~7 that also has the power and I2C lines at the edge. Furthermore note that all I/O pins are brought out to separate holes in alignment with the header sockets. And my favourite – a switch-mode power supply circuit that can offer up to 2A of current – great for GSM shields.

freetronics goldilocks top

Another point of interest is the ATmega32U2 microcontroller which is for USB duties – however it can be used as a separate “board” on its own, with a separate reset button, ICSP breakout and the ports are broken out logically:

freetronics goldilocks atmega32u2

Furthermore the 32U2′s SPI bus can be wired over to the main 1284P to allow communication between the two – simply by bridging the provided pads on the PCB you can join them. Also on the bottom you can see how each I/O pin can be disconnected from the I/O areas and thus diverted if necessary. It really is a testament to the design that so much of the board is customisable, and this attention to detail makes it stand apart from the usual Arduino-compatibles out there.

freetronics goldilocks bottom

One thing that did strike me was the retina-burning intensity of the onboard LEDs – however you can disable them by cutting the provided track on the PCB. For a complete explanation of the hardware side of things, check out the user guide.

Using the Goldilocks

One of the main goals was to be Arduino Uno R3-compatible, and from initial examination this is certainly the case. However there are a couple of differences, which you can find out more about in the user guide. This is not the first board for an Arduino user, but something chosen after getting some experience. Installation was very easy, it should be plug-and-play for the non-Windows crowd. However if you’re part of the silent majority of Windows users then the required U2duino Programmer.inf file for the Device Manager will be found in the production_firmware folder of the software download available on the product page. Furthermore no matter your OS – don’t forget to install the Arduino IDE Goldilocks board profile.

Before getting too excited and uploading your sketches, you can examine the the ATmega1284p bootloader monitor which allows for memory dumps, port testing, and more. Simply connect up your board, load the Arduino IDE, select the board and COM: port then open the Serial Monitor. By sending “!!!” after a board reset, a simple menu appears – which is shown in the following video:

Now for a quick speed test. We’ll use a sketch written by Steve Curd from the Arduino forum. It calculates Newton Approximation for pi using an infinite series:

// Pi_2 by Steve Curd // December 2012
// This program approximates pi utilizing the Newton's approximation.  It quickly
// converges on the first 5-6 digits of precision, but converges verrrry slowly
// after that.  For example, it takes over a million iterations to get to 7-8
// significant digits.

#define ITERATIONS 100000L    // number of iterations
#define FLASH 1000            // blink LED every 1000 iterations

void setup() 
{
  pinMode(13, OUTPUT);        // set the LED up to blink every 1000 iterations
  Serial.begin(57600);
}

void loop() 
{
  unsigned long start, time;
  unsigned long niter=ITERATIONS;
  int LEDcounter = 0;
  boolean alternate = false;
  unsigned long i, count=0;
  float x = 1.0;
  float temp, pi=1.0;
  Serial.print("Beginning ");
  Serial.print(niter);
  Serial.println(" iterations...");
  Serial.println();
  start = millis();  
  for ( i = 2; i < niter; i++) {
    x *= -1.0;
    pi += x / (2.0f*(float)i-1.0f);
    if (LEDcounter++ > FLASH) {
      LEDcounter = 0;
      if (alternate) {
        digitalWrite(13, HIGH);
        alternate = false;
      } else {
        digitalWrite(13, LOW);
        alternate = true;
      }
      temp = 40000000.0 * pi;
    }
  }
  time = millis() - start;
  pi = pi * 4.0;
  Serial.print("# of trials = ");
  Serial.println(niter);
  Serial.print("Estimate of pi = ");
  Serial.println(pi, 10);
  Serial.print("Time: "); Serial.print(time); Serial.println(" ms");
  delay(10000);
}

The Goldilocks was compared with a standard Arduino Uno, with the following results (click image to enlarge):

goldilocks Uno speed test

 As you can see from the results below, the Goldilocks theoretical extra 4 Mhz of speed is shown in the elapsed time between the two boards – 4433 ms for the Goldilocks vs. 5562 ms for the Uno, a 25.4% increase. Looking good. We’ll leave it for now – however for more information you can review the complete user manual, and also discuss Goldilocks in the Freetronics customer forum.

Competition

Two of our twitter followers will be randomly selected on the 14th of September, and will each receive one Goldilocks board. So follow us on @tronixstuff for a chance to win a board, and also keep up with news, new articles and items of interest. Board will be delivered by Australia Post standard air mail. We’re not responsible for customs or import duties, VAT, GST, import duty, postage delays, non-delivery or whatever walls your country puts up against receiving inbound mail.

Conclusion

The Goldilocks is the board that can solve many problems – especially when you’ve outgrown your Uno or similar board. We look forward to using it with larger projects that burn up SRAM and exploring the possibilities of using the two microcontrollers at once. There’s a whole bundle of potential – so congratulations to Phillip Stevens, Freetronics and all those who pledge to the funding and supported the project in general. And to join in – you can get your own from Freetronics. Full-sized images are on flickr. And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

The post Initial Review – Goldilocks Arduino-compatible with ATmega1284P appeared first on tronixstuff.

Aug
14

Introduction

Controlling motors with an Arduino is a fun and generally integral part of the learning process for most up-and-coming embedded electronics enthusiasts. Or quite simply, using motors is fun ’cause you can make robots, tanks and stuff that moves. And thanks to Freetronics we have their new HBRIDGE motor shield for Arduino to review, so let’s check it out and get some things moving with it.

Arriving in retail-friendly packaging, the HBRIDGE can be stored with the included reusable packaging, and also has a quick-start guide that explains the technical specifications and URLs for tutorials:

HBRIDGE

The shield is compatible with the latest R3-series Arduino boards including the Leonardo and of course the Freetronics Eleven board:

HBRIDGE shield Freetronics Eleven

Specifications

The HBRIDGE shield is based on the Allegro A4954 Dual Full-Bridge DMOS PWM Motor Driver. For the curious, you can download the data sheet (pdf). This allows very simple control of two DC motors with a maximum rating of 40V at 2A, or one bipolar stepper motor. Unlike other motor shields I’ve seen, the HBRIDGE has a jumper which allows the power supply for the motor shield to be fed into the Arduino’s Vin line – so if your motor power supply is under 12V DC you can also power the Arduino from the same supply. Or you can run the motors from the Arduino’s power supply – if you’re sure that you won’t exceed the current rating. Frankly the former would be a safer and this the preferable solution.

The motor(s) are controlled very simply via PWM and digital logic. You feed the A4954 a PWM signal from a digital output pin for motor speed, and also set two inputs with a combination of high/low to set the motor direction, and also put the motor controlled into coast or brake mode. However don’t panic, it’s really easy.

Using the shield

How easy? Let’s start with two DC motors. One example of this is the tank chassis used in Chapter 12 of my book “Arduino Workshop - A Hands-On Introduction with 65 Projects“:

arduino_workshop_tank

The chassis is pretty much a standard tank chassis with two DC motors that run from an internal 9V battery pack. Search the Internet for “Dagu Rover 5″ for something similar. Connection is a simple manner of feeding the power lines from the battery and the motor wires into the terminal block on the HBRIDGE shield.

Next, take note of two things. First – the slide switches below the jumpers. Using these you can select the maximum amount of current allowed to flow from the power supply to each motor. These can be handy to ensure your motor doesn’t burn out by drawing too much current in a stall situation, so you can set these to the appropriate setting for your motor – or if you’re happy there won’t be any issues just leave them both on 2A.

The second thing to note is the six jumpers above the switches. These control which digital pins on your Arduino are used to control the motor driver. Each motor channel requires two outputs and one PWM output. If you leave them all on, the Arduino pins used will be the ones listed next to each jumper, otherwise remove the jumpers and manually wire to the required output. For the purposes of our demonstration, we’ll leave all the jumpers in. A final word of warning is to be careful not to touch the A4954 controller IC after some use – it can become really hot … around 160 degrees Celsius. It’s the circled part in the image below:

A4954_controller_IC

So back to the DC motors. You have two digital outputs to set, and also a PWM signal to generate – for each channel. If you set the outputs to 1 and 0  - the motor spins in one direction. Use 0 and 1 to spin the other way. And the value of the PWM (0~255) determines the speed. So consider the following sketch:

// Freetronics HBridge shield demonstration

int motora1 = 4;
int motora2 = 7;
int motoraspeed = 6;
int motorb1 = 3;
int motorb2 = 2;
int motorbspeed = 5;

void setup()
{
  pinMode(motora1, OUTPUT);
  pinMode(motora2, OUTPUT);
  pinMode(motoraspeed, OUTPUT); 
  pinMode(motorb1, OUTPUT);
  pinMode(motorb2, OUTPUT);
  pinMode(motorbspeed, OUTPUT);  
  delay(5000); 
}

void allOff()
// turns both motors off
{
  digitalWrite(motora1, LOW);
  digitalWrite(motora2, LOW);
  digitalWrite(motoraspeed, LOW);
  digitalWrite(motorb1, LOW);
  digitalWrite(motorb2, LOW);
  digitalWrite(motorbspeed, LOW);  
}

void goForward(int speed)
{
  digitalWrite(motora1, HIGH);
  digitalWrite(motora2, LOW);
  digitalWrite(motoraspeed, speed);
  digitalWrite(motorb1, HIGH);
  digitalWrite(motorb2, LOW);
  digitalWrite(motorbspeed, speed);  
}

void goBackward(int speed)
{
  digitalWrite(motora1, LOW);
  digitalWrite(motora2, HIGH);
  digitalWrite(motoraspeed, speed);
  digitalWrite(motorb1, LOW);
  digitalWrite(motorb2, HIGH);
  digitalWrite(motorbspeed, speed); 
}

void turnRight(int speed)
{
  digitalWrite(motora1, LOW);
  digitalWrite(motora2, HIGH);
  digitalWrite(motoraspeed, speed);
  digitalWrite(motorb1, HIGH);
  digitalWrite(motorb2, LOW);
  digitalWrite(motorbspeed, speed); 
}

void turnLeft(int speed)
{
  digitalWrite(motora1, HIGH);
  digitalWrite(motora2, LOW);
  digitalWrite(motoraspeed, speed);
  digitalWrite(motorb1, LOW);
  digitalWrite(motorb2, HIGH);
  digitalWrite(motorbspeed, speed); 
}

void loop()
{
  goForward(255);
  delay(1000);
  turnLeft(200);
  delay(1000);
  goBackward(255);
  delay(1000);
  turnRight(200);
  delay(1000);
}

Instead of chasing the tank chassis with a camera, here it is on the bench:

Now to try out a stepper motor. You can control a bipolar motor with the HBRIDGE shield, and each coil (pole) is connected to a motor channel.

Hint – if you’re looking for a cheap source of stepper motors, check out discarded office equipment such as printers or photocopiers. 

For the demonstration, I’ve found a random stepper motor from a second-hand store and wired up each pole to a channel on the HBRIDGE shield – then run the Arduino stepper motor demonstration sketch by Tom Igoe:

/*
 Based on example by Tom Igoe included in Arduino IDE
 at File -> Examples -> Stepper -> stepper_oneRevolution

 Modified to suit pinouts of Freetronics HBridge Shield
*/

#include <Stepper.h>

const int stepsPerRevolution = 240;  // change this to fit the number of steps per revolution
                                     // for your motor

// initialize the stepper library using the default pins on the HBridge Shield:
Stepper myStepper(stepsPerRevolution, 4, 7, 3, 2);

void setup() {
  // set the speed at 200 rpm:
  myStepper.setSpeed(200);
  // initialize the serial port:
  Serial.begin(38400);
}

void loop() {
  // step one revolution  in one direction:
   Serial.println("clockwise");
  myStepper.step(stepsPerRevolution);
  delay(1000);

   // step one revolution in the other direction:
  Serial.println("counterclockwise");
  myStepper.step(-stepsPerRevolution);
  delay(1000); 
}

With the following results:

Considering it was a random stepper motor for which we didn’t have the specifications for – it’s always nice to have it work the first time! For more formal situations, ensure your stepper motor matches the power supply voltage and so on. Nevertheless it shows how easy it can be to control something that appears complex to some people, so enjoy experimenting with them if you can.

Competition

Thanks to Freetronics we have a shield to give away to one lucky participant. To enter, clearly print your email address on the back of a postcard and mail it to:

H-Bridge Competition, PO Box 5435 Clayton 3168 Australia.

Entries must be received by the 20th of  September 2013. One postcard will then be drawn at random, and the winner will receive one H-Bridge shield delivered by Australia Post standard air mail. One entry per person – duplicates will be destroyed. We’re not responsible for customs or import duties, VAT, GST, import duty, postage delays, non-delivery or whatever walls your country puts up against receiving inbound mail.

Conclusion

As demonstrated, the HBRIDGE shield “just works” – which is what you need when bringing motorised project ideas to life. The ability to limit current flow and also power the host board from the external supply is a great idea, and with the extra prototyping space on the shield you can also add extra circuitry without needing another protoshield. Very well done. For more information and to order, visit the Freetronics website. Full-sized images are on flickr. And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

tronixstuff

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Note – The motor shield used in this article was a promotional consideration supplied by Freetronics.

The post Part review – Freetronics HBRIDGE motor driver shield for Arduino appeared first on tronixstuff.

Introduction

If you’re awake and an Internet user, sooner or later  you’ll come across the concept of the “Internet of Things”. It is the goal of many people and organisations to have everything connected to everything for the exchange of data and the ability to control things. And as time marches on, more systems (or “platforms”) are appearing on the market. Some can be quite complex, and some are very easy to use – and this is where our interests lay. In the past we’ve examined the teleduino system, watched the rise of Ninja Blocks, and other connected devices like the lifx bulb and more.

However the purpose of this article is to demonstrate a new platform – XOBXOB (pronounced “zob-zob”) that gives users (and Arduino users in particular) a method of having remote devices connect with each other and be controlled over the Internet. At the time of writing XOBXOB is still in alpha stage, however you’re free to give it a go. So let’s do that now with Arduino.

Getting Started

You’ll need an Arduino and Ethernet shield – or a combination board such as a Freetronics EtherTen, or a WiFly board from Sparkfun. If you don’t have any Ethernet hardware there is a small application you can download that gives your USB-connected Arduino a link to the XOBXOB service. However before that, visit the XOBXOB homepage and register for an account. From there you can visit the dashboard which has your unique API key and a few controls:

XOBXOB dashboard

Now download the Arduino libraries and copy them into the usual location. If you don’t have an Ethernet shield, also get the “connector” application (available for all three OSs). The connector application is used after uploading the XOBXOB-enabled sketches to your Arduino and links it to the XOBXOB service.

Testing with exanples

Moving on, we’ve started with the basic LED control Ethernet sketch which is included in the XOBXOB library. It’s a fast way to check the system is working and your Internet connection is suitable. When using the examples for the first time (or any other XOBXOB sketch, don’t forget to enter your API key and Ethernet MAC address, for example:

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0x12, 0x01 };
String APIKey = "cc6zzzzz-0494-4cd7-98a6-62cf21aqqqqq";

We have the EtherTen connected to the ADSL and control via a cellular phone. It’s set to control digital pin 8 so after inserting an LED it worked first time:

The LED is simply turned on and off by using the ON/OFF panel on the XOBXOB dashboard, and then clicking “SET”. You can also click “GET” to retrieve the status of the digital output. The GET function is useful if more than one person is logged into the dashboard controlling what’s at the other end.

Now for some more fun with the other included example, which controls a MAX7219 LED display driver IC. We used one of the boards from the MAX7219 test a while back, which worked fine with the XOBXOB example in the Arduino library:

If this example doesn’t compile for you, remove the line:

#include <"avr/pgmspace.h">

Once operating, this example is surprisingly fun, and could be built into a small enclosure for a simple remote-messaging system.

Controlling your own projects

The functions are explained in the Arduino library guide, which you should download and review. Going back to the LED blink example, you can see how the sketch gets and checks for a new on/off message in the following code:

if (!lastResponseReceived && XOB.loadStreamedResponse()) {

    lastResponseReceived = true;

    String LED = XOB.getMessage("switch");
    if (LED == "\"ON\"") {
      digitalWrite (8, HIGH);
    } 
    else {
      digitalWrite (8, LOW);
    }

So instead of the digitalWrite() functions, you can insert whatever you want to happen when the ON/OFF button is used on the XOBXOB dashboard.  For example with the use of a Powerswitch Tail you could control a house light or other device from afar.

If you want to control more than one device from the dashboard, you need to create another XOB. This is done by entering the “advanced” dashboard and clicking “New”. After entering a name for the new XOB it will then appear in the drop-down list in either dashboard page. To then assign that XOB to a new device, it needs to be told to request that XOB by name in the Arduino sketch.

For example, if you created a new XOB called “garagelight” you need to insert the XOB name in the XOB.requestXOB() function in the sketch:

XOB.requestXOB("garagelight");

and then it will respond to the dashboard when required. Later on we’ll return to XOBXOB and examine how to upload information from a device to the dashboard, to allow remote monitoring of temperature and other data.

Conclusion

Experimenting with XOBXOB was a lot of fun, and much easier than originally planned. Although only in the beginning stages, I’m sure it can find a use with your hardware and a little imagination. Note that XOBXOB is still in alpha stage and not a finished product. For more information, visit hte XOBXOB website. And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

The post Arduino and the XOBXOB IoT Platform appeared first on tronixstuff.

Introduction

If you’re awake and an Internet user, sooner or later  you’ll come across the concept of the “Internet of Things”. It is the goal of many people and organisations to have everything connected to everything for the exchange of data and the ability to control things. And as time marches on, more systems (or “platforms”) are appearing on the market. Some can be quite complex, and some are very easy to use – and this is where our interests lay. In the past we’ve examined the teleduino system, watched the rise of Ninja Blocks, and other connected devices like the lifx bulb and more.

However the purpose of this article is to demonstrate a new platform – XOBXOB (pronounced “zob-zob”) that gives users (and Arduino users in particular) a method of having remote devices connect with each other and be controlled over the Internet. At the time of writing XOBXOB is still in alpha stage, however you’re free to give it a go. So let’s do that now with Arduino.

Getting Started

You’ll need an Arduino and Ethernet shield – or a combination board such as a Freetronics EtherTen, or a WiFly board from Sparkfun. If you don’t have any Ethernet hardware there is a small application you can download that gives your USB-connected Arduino a link to the XOBXOB service. However before that, visit the XOBXOB homepage and register for an account. From there you can visit the dashboard which has your unique API key and a few controls:

XOBXOB dashboard

Now download the Arduino libraries and copy them into the usual location. If you don’t have an Ethernet shield, also get the “connector” application (available for all three OSs). The connector application is used after uploading the XOBXOB-enabled sketches to your Arduino and links it to the XOBXOB service.

Testing with exanples

Moving on, we’ve started with the basic LED control Ethernet sketch which is included in the XOBXOB library. It’s a fast way to check the system is working and your Internet connection is suitable. When using the examples for the first time (or any other XOBXOB sketch, don’t forget to enter your API key and Ethernet MAC address, for example:

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0x12, 0x01 };
String APIKey = "cc6zzzzz-0494-4cd7-98a6-62cf21aqqqqq";

We have the EtherTen connected to the ADSL and control via a cellular phone. It’s set to control digital pin 8 so after inserting an LED it worked first time:

The LED is simply turned on and off by using the ON/OFF panel on the XOBXOB dashboard, and then clicking “SET”. You can also click “GET” to retrieve the status of the digital output. The GET function is useful if more than one person is logged into the dashboard controlling what’s at the other end.

Now for some more fun with the other included example, which controls a MAX7219 LED display driver IC. We used one of the boards from the MAX7219 test a while back, which worked fine with the XOBXOB example in the Arduino library:

If this example doesn’t compile for you, remove the line:

#include <"avr/pgmspace.h">

Once operating, this example is surprisingly fun, and could be built into a small enclosure for a simple remote-messaging system.

Controlling your own projects

The functions are explained in the Arduino library guide, which you should download and review. Going back to the LED blink example, you can see how the sketch gets and checks for a new on/off message in the following code:

if (!lastResponseReceived && XOB.loadStreamedResponse()) {

    lastResponseReceived = true;

    String LED = XOB.getMessage("switch");
    if (LED == "\"ON\"") {
      digitalWrite (8, HIGH);
    } 
    else {
      digitalWrite (8, LOW);
    }

So instead of the digitalWrite() functions, you can insert whatever you want to happen when the ON/OFF button is used on the XOBXOB dashboard.  For example with the use of a Powerswitch Tail you could control a house light or other device from afar.

If you want to control more than one device from the dashboard, you need to create another XOB. This is done by entering the “advanced” dashboard and clicking “New”. After entering a name for the new XOB it will then appear in the drop-down list in either dashboard page. To then assign that XOB to a new device, it needs to be told to request that XOB by name in the Arduino sketch.

For example, if you created a new XOB called “garagelight” you need to insert the XOB name in the XOB.requestXOB() function in the sketch:

XOB.requestXOB("garagelight");

and then it will respond to the dashboard when required. Later on we’ll return to XOBXOB and examine how to upload information from a device to the dashboard, to allow remote monitoring of temperature and other data.

Conclusion

Experimenting with XOBXOB was a lot of fun, and much easier than originally planned. Although only in the beginning stages, I’m sure it can find a use with your hardware and a little imagination. Note that XOBXOB is still in alpha stage and not a finished product. For more information, visit hte XOBXOB website. And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

The post Arduino and the XOBXOB IoT Platform appeared first on tronixstuff.

Aug
07

Freetronics CUBE4: RGB LED Cube Competition Winner

competition, freetronics, tronixstuff Comments Off on Freetronics CUBE4: RGB LED Cube Competition Winner 

In June we published a review of the Freetronics CUBE4: RGB LED Cube kit, and inside that review was the details for a simple competition – send in a postcard to go in the draw for a free kit. So today we’ve put all the cards in a box, shuffled them around a bit and selected one winner:

winnersmall

Thanks to all those who entered, and for the curious here are the submitted cards:

entrantssmall

Personally I’d like to thank all those who enjoyed the spirit of the competition and sent in a card. I’ve always wanted to visit Germany and from the look of the postcards, now Utah looks good as well. We’ll contact the winning participant by email.

We hope to run more competitions in the future and also offer product discounts for our readers – so be sure to read all of a post when they appear. And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

 

The post Freetronics CUBE4: RGB LED Cube Competition Winner appeared first on tronixstuff.



  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook