Posts | Comments

Planet Arduino

Archive for the ‘Shape-Shifting Interface’ Category

Virtual reality technology has come a long way in the last decade, but there are still some major things that could be done to make it even more interactive and immersive. For one, what if VR users could actually feel the ground they walk on rather than simply see it? A team of students from the Industrial Design program at KAIST in South Korea and the computer science program at the University of Chicago set out to tackle this by creating a fairly large 1.8 by 0.6 meter platform that can accurately create the feeling of varied terrain. Called the Elevate, this device uses a total of 1,200 pins that can individually raise and lower with 15mm of resolution. 

Each pin is comprised of a block of wood that protrudes from the platform, a comb-shaped section that is used to move the pin, and a locking bar to prevent unintended movement. At the core of the device is the shape generator, and its job is to individually actuate each pin. This is accomplished by moving row-by-row across the 60 rows to push or pull all of the pins within it via a timing belt and DC motor. There are 10 actuator modules in total that each contain an Arduino Nano, a regulator, two geared DC motors, a hall effect sensor, and a pair of magnets. The locking mechanism is controlled with an Arduino Uno and two servo drivers, and horizontal movements are done with an Uno as well and two microstepper controllers.

The resulting terrain is quite spectacular, as this much granularity means really fine details can be replicated. When paired with the VR game, participants who were testing the device consistently rated their experience on the Elevate to be far better than simply playing in VR. 

To learn more about this project, check out the video below and the team’s paper here.

The post Elevate is a walkable pin array floor that generates shape-changing terrain for VR appeared first on Arduino Blog.

Shape-shifting interfaces, which could be deployed to create dynamic furniture, structures or VR environments, have great potential; however, creating them is often quite difficult. To simplify things, researchers from the University of Colorado Boulder have developed “LiftTiles,” modular blocks that raise to the desired height (between 15 and 150 centimeters) via air pressure and then collapse under spring force when needed.

Each pneumatic tile costs under $10 USD, weighs only 10kg each, and supports up to 10kg of weight. To demonstrate their design, the team used solenoid valves to inflate blocks and servo motors to open release valves that allow the blocks deflate and compress. 

The system is based on an Arduino Mega board, along with an SR300 depth camera to measure the height of each section and client software running on a control computer. 

More details can be found in the project’s research paper.

A few years ago, MIT’s Tangible Media Group developed “inFORM” — a dynamic display that used a series of motor-controlled pins to render digital content physically. In their latest project, the researchers have added some features to the existing platform to create what they’re calling “Materiable,” an interface that not only changes shape but also simulates a variety of materials such as rubber, water and sand.

Materiable’s tiny pins can be programmed with different properties simultaneously, as well as respond to touch and give haptic feedback in return. Each individual pixel has the ability to detect the pressure of user input and react with simulated physics via computer algorithms. This enables the interface to be used for everything from mocking up concepts, to prototyping landscape designs, to testing complex scenarios like earthquakes and tsunamis.

Shape changing interfaces give physical shapes to digital data so that users can feel and manipulate data with their hands and bodies. However, physical objects in our daily life not only have shape but also various material properties. In this project, we propose “Materiable,” an interaction technique to represent material properties using shape changing interfaces. Specifically, by integrating the multi-modal sensation techniques of haptics, our approach builds a perceptive model for the properties of deformable materials in response to direct manipulation without precise force feedback.

As a proof-of-concept prototype, we developed preliminary physics algorithms running on pin-based shape displays. The system can create computationally variable properties of deformable materials that are visually and physically perceivable. In our experiments, users identify three deformable material properties (flexibility, elasticity and viscosity) through direct touch interaction with the shape display and its dynamic movements.

Our research shows that shape changing interfaces can go beyond simply displaying shape allowing for rich embodied interaction and perceptions of rendered materials with the hands and body.

You can read more about the project on the Tangible Media Group’s page.



  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • Like Us on Facebook