Posts | Comments

Planet Arduino

Archive for the ‘arduino’ Category

3dprint-star

We can’t miss the chance to play with some LEDs now that holidays are coming and mix some electronics with 3d printing on Materia 101.

In the tutorial of this Kristoffer is experimenting on Xmas decorations, Arduino Micro and some code to play around with.

The result is what you see in the picture below!
xmaslights
Do you want to make it too? Follow the steps on Scuola >>
Check the previous tutorials on 3d printing with Material 101

Interested in getting in touch and showing your experiments? Join Kristoffer on the Arduino forum dedicated to Materia 101 and give us your feedback.

mg_1131-600

Lukas of Soldernerd built a DIY Arduino-based inductance meter:

I’ve just finished a little Arduino project. It’s a shield for the Arduino Uno that lets you measure inductance. This is a functionality that I found missing in just about any digital multi meter. Yes, there are specialized LCR meters that let you measure inductance but they typically won’t measure voltages or currents. So I had to build my inductance meter myself.

[via]

Arduino-based inductance meter - [Link]

dic
17
Activity trackers (e.g. the FitBit) are becoming more popular for tracking fitness goals. As fun as this is, you could always just build your own with, you guessed it, an Arduino! You’ll also need a battery, a Bluetooth module, an accelerometer, as well as some custom software on your smartphone […]

Read more on MAKE

fountain
Using Arduino Micro to control a fountain is the project shared by Michael Diesing on Twitter:

May I introduce my second ARDUINO-project with own pcb. With the pcb I am able to drive seven brushless pumps(with integrated electronics). The “problem” with such kind of pumps is that they don’t accept unfiltered pwm-signals as supply voltage. So I created a circuit where the pwm-signals of an ARDUINO-micro are level-shifted to 12V with a darlington array and afterwards filtered with a 1 uF ceramic capacitor and a 730 Ohm resistor (low pass filter). The signals are then led into the adjust-pins of seven “lm317″s. To work properly I needed to connect the adjust-pins also with 2500 Ohm resistors to gnd, but I found out that with two l293d instead of the used TDP62783 (darlington array) these resistors are not needed, but different resistor and capacitor values for adequate filtering!
The pums also have tacho signals which I connected via schottky-diodes to the ARDUINO (inputs with pullup). With the tacho-signals I am able to find out if pumps are stuck, are sucking air or are not connected.
Additionally I added one ACS712-05B current sensor (which measures the entire current of the circuit) that could be used to find out if pumps that don’t have tacho-signals are working properly. At the moment it is not used.
Besides that I integrated a lm386 audio-amp used to amplify the signal of an electret-mic to a level that is suitable for the ATEMGA’s ADC.

As the first project for the pcb I created a fountain consisting of a shortened wine barrel, seven brushless pumps, a pushbutton with led and pebbles (s. video).
There are seven animation-modes which can be selected via the pushbutton (the selected mode is stored in eeprom).
The speed of the pumps is checked permanently during operation.
The average power consumption is ~20W and max. consumption is 30W.

Discover the different modes to control it reading the description on youtube video.

arte-docum

Last saturday, Arte tvl aired a short documentary in french language about Arduino. The video was created by FUTURE magazine and featuring Massimo Banzi, David Cuartielles and Arduino users: children and young electronics enthusiasts:

Tinkering in a garage on a drone, playing with a set of lights with LEDs or even build a robotic arm worthy of a science fiction movie … Today, even when one is a novice in electronics all this is possible through Arduino, a real flexible technology.

They also created two nice short info-animations to explain what is Arduino and the idea of open source:

02770168_03Now is your chance to win a Make: it Robotics Starter Kit! Read more to learn how.

Read more on MAKE

The buzzer on a washer or dryer may be OK for most people, but what if you would like something a little more versatile to tell you when your laundry is done? Here’s an interesting solution involving an Arduino Yún that sends a text message when the washer or dryer […]

Read more on MAKE

Dean Segovis’ Fetch-O-Matic is an automatic tennis ball launcher the gives dogs a workout while having fun. The secret to the launcher is the windshield wiper motor housed inside. When a ball is dropped inside the holder, it sends some power to the motor, which in turn transfers the energy to the spring-loaded throw arm and launches the ball. Those savvy enough can train their dogs to use it by themselves whenever they want to have fun.  Pets are people too. If corporations can be labeled as people then why can’t our pets? Regardless, when it comes to our pets, we often spoil them with lavish gifts to show our affections. Makers on the other hand tend to build projects that help with everything from feeding […]

Read more on MAKE

[Connor] was working on a project for his college manufacturing class when he came up with the idea for this sleek desk lamp. As a college student, he’s not fond of having his papers glowing brightly in front of him at night. This lamp takes care of the problem by adjusting the color temperature based on the position of the sun. It also contains a capacities touch sensor to adjust the brightness without the need for buttons with moving parts.

The base is made from two sheets of aluminum and a bar of aluminum. These were cut and milled to the final shape. [Connor] found a nice DC barrel jack from Jameco that fits nicely with this design. The head of the lamp was made from another piece of aluminum bar stock. All of the aluminum pieces are held together with brass screws.

A slot was milled out of the bottom of the head-piece to make room for an LED strip and a piece of 1/8″ acrylic. This piece of acrylic acts as a light diffuser.  Another piece of acrylic was cut and added to the bottom of the base of the lamp. This makes for a nice glowing outline around the bottom that gives it an almost futuristic look.

The capacitive touch sensor is a pretty simple circuit. [Connor] used the Arduino capacitive touch sensor library to make his life a bit easier. The electronic circuit really only requires a single resistor between two Arduino pins. One of the pins is also attached to the aluminum body of the lamp. Now simply touching the lamp body allows [Connor] to adjust the brightness of the lamp.

[Connor] ended up using an Electric Imp to track the sun. The Imp uses the wunderground API to connect to the weather site and track the sun’s location. In the earlier parts of the day, the LED colors are cooler and have more blues. In the evening when the sun is setting or has already set, the lights turn more red and warm. This is easier on the eyes when you are hunched over your desk studying for your next exam. The end result is not only functional, but also looks like something you might find at that fancy gadget store in your local shopping mall.


Filed under: Arduino Hacks
dic
13

DC-Motor-Control_top-view_plain

by elektor.com:

Infineon have announced two shields for the Arduino development environment. The RGB LED Lighting Shield (shown left) provides three independent output channels with a DC/DC LED driver stage to give flicker-free control of multicolor LEDs. It is fitted with an XMC1202 microcontroller using a Brightness Color Control Unit (BCCU) to help off-load time-critical events from the Arduino processor. The Shield can be expanded by adding an optional isolated DMX512 interface for stage lighting control and audio nodes or a 24 GHz radar sensor for motion detection.

Arduino Shields from Infineon - [Link]



  • Newsletter

    Sign up for the PlanetArduino Newsletter, which delivers the most popular articles via e-mail to your inbox every week. Just fill in the information below and submit.

  • PlanetArduino is powered by WordPress. Design by Jasone.it. Valid XHTML   •   Valid CSS
    53 queries. 2,697 seconds.